Advertisement

Journal of Inherited Metabolic Disease

, Volume 38, Issue 1, pp 65–76 | Cite as

Human genetic disorders of sphingolipid biosynthesis

  • Leonardo Astudillo
  • Frédérique Sabourdy
  • Nicole Therville
  • Heiko Bode
  • Bruno Ségui
  • Nathalie Andrieu-Abadie
  • Thorsten Hornemann
  • Thierry Levade
Complex Lipids

Abstract

Monogenic defects of sphingolipid biosynthesis have been recently identified in human patients. These enzyme deficiencies affect the synthesis of sphingolipid precursors, ceramides or complex glycosphingolipids. They are transmitted as autosomal recessive or dominant traits, and their resulting phenotypes often replicate the abnormalities seen in murine models deficient for the corresponding enzymes. In quite good agreement with the known critical roles of sphingolipids in cells from the nervous system and the epidermis, these genetic defects clinically manifest as neurological disorders, including paraplegia, epilepsy or peripheral neuropathies, or present with ichthyosis. The present review summarizes the genetic alterations, biochemical changes and clinical symptoms of this new group of inherited metabolic disorders. Hypotheses regarding the molecular pathophysiology and potential treatments of these diseases are also discussed.

Keywords

Ceramides Hereditary Spastic Paraplegia Sphingoid Base Ceramide Synthases GBA2 Mutation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

ARCI

Autosomal recessive congenital ichthyosis

deoxyCer

1-deoxy-ceramide

deoxySa

1-deoxy-sphinganine

deoxymetSa

1-deoxymethyl-sphinganine

deoxySL

1-deoxy-sphingolipid

HSAN

Hereditary sensory and autonomic neuropathy

MRI

Magnetic resonance imaging

S1P

Sphingosine 1-phosphate

SL

Sphingolipid

SPT

Serine-palmitoyltransferase

Notes

Acknowledgments

This work was supported by INSERM, Université Paul Sabatier, ANR (SphingoDR program), RITC, LNCC (Equipe Labellisée 2013), CHU Toulouse, and the Vaincre les Maladies Lysosomales Foundation (for TL’s group), and the Gebert Rüf Foundation, the Center for Integrative Human Physiology (ZIHP, University of Zurich), “radiz” – Rare Disease Initiative Zurich, Clinical Research Priority Program for Rare Diseases, University of Zurich, and the European Commission (LSHM-CT-2006-037631) (for TH’s group).

Compliance with Ethics Guidelines

Conflict of Interest

None.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

  1. Aleman TS, Soumittra N, Cideciyan AV et al (2009) CERKL mutations cause an autosomal recessive cone-rod dystrophy with inner retinopathy. Invest Ophthalmol Vis Sci 50(12):5944–5954PubMedCrossRefGoogle Scholar
  2. Ali M, Ramprasad VL, Soumittra N et al (2008) A missense mutation in the nuclear localization signal sequence of CERKL (p. R106S) causes autosomal recessive retinal degeneration. Mol Vis 14:1960–1964PubMedCentralPubMedGoogle Scholar
  3. Auer-Grumbach M, Bode H, Pieber TR et al (2013) Mutations at Ser331 in the HSN type I gene SPTLC1 are associated with a distinct syndromic phenotype. Eur J Med Genet 56(5):266–269PubMedCentralPubMedCrossRefGoogle Scholar
  4. Auslender N, Sharon D, Abbasi AH, Garzozi HJ, Banin E, Ben-Yosef T (2007) A common founder mutation of CERKL underlies autosomal recessive retinal degeneration with early macular involvement among Yemenite Jews. Invest Ophthalmol Vis Sci 48(12):5431–5438PubMedCrossRefGoogle Scholar
  5. Avila-Fernandez A, Riveiro-Alvarez R, Vallespin E et al (2008) CERKL mutations and associated phenotypes in seven Spanish families with autosomal recessive retinitis pigmentosa. Invest Ophthalmol Vis Sci 49(6):2709–2713PubMedCrossRefGoogle Scholar
  6. Bayes M, Goldaracena B, Martinez-Mir A et al (1998) A new autosomal recessive retinitis pigmentosa locus maps on chromosome 2q31-q33. J Med Genet 35(2):141–145PubMedCentralPubMedCrossRefGoogle Scholar
  7. Bejaoui K, Uchida Y, Yasuda S et al (2002) Hereditary sensory neuropathy type 1 mutations confer dominant negative effects on serine palmitoyltransferase, critical for sphingolipid synthesis. J Clin Invest 110(9):1301–1308PubMedCentralPubMedCrossRefGoogle Scholar
  8. Bejaoui K, Wu C, Scheffler MD et al (2001) SPTLC1 is mutated in hereditary sensory neuropathy, type 1. Nat Genet 27(3):261–262PubMedCrossRefGoogle Scholar
  9. Ben-David O, Pewzner-Jung Y, Brenner O et al (2011) Encephalopathy caused by ablation of very long acyl chain ceramide synthesis may be largely due to reduced galactosylceramide levels. J Biol Chem 286(34):30022–30033PubMedCentralPubMedCrossRefGoogle Scholar
  10. Boccuto L, Aoki K, Flanagan-Steet H et al (2013) A mutation in a ganglioside biosynthetic enzyme, ST3GAL5, results in salt & pepper syndrome, a neurocutaneous disorder with altered glycolipid and glycoprotein glycosylation. Hum Mol Genet 23(2):418–433PubMedCrossRefGoogle Scholar
  11. Boukhris A, Schule R, Loureiro JL et al (2013) Alteration of ganglioside biosynthesis responsible for complex hereditary spastic paraplegia. Am J Hum Genet 93(1):118–123PubMedCentralPubMedCrossRefGoogle Scholar
  12. Brown KE, Anderson SM, Young NS (1993) Erythrocyte P antigen: cellular receptor for B19 parvovirus. Science 262(5130):114–117PubMedCrossRefGoogle Scholar
  13. Cao L, Huang XJ, Chen CJ, Chen SD (2013) A rare family with Hereditary Spastic Paraplegia Type 35 due to novel FA2H mutations: a case report with literature review. J Neurol Sci 329(1–2):1–5PubMedCrossRefGoogle Scholar
  14. Chiavegatto S, Sun J, Nelson RJ, Schnaar RL (2000) A functional role for complex gangliosides: motor deficits in GM2/GD2 synthase knockout mice. Exp Neurol 166(2):227–234PubMedCrossRefGoogle Scholar
  15. Citterio A, Arnoldi A, Panzeri E et al (2014) Mutations in CYP2U1, DDHD2 and GBA2 genes are rare causes of complicated forms of hereditary spastic paraparesis. J Neurol 261(2):373–381PubMedCrossRefGoogle Scholar
  16. Cox TM, Cachon-Gonzalez MB (2012) The cellular pathology of lysosomal diseases. J Pathol 226(2):241–254PubMedCrossRefGoogle Scholar
  17. Cuadros R, Montejo de Garcini E, Wandosell F, Faircloth G, Fernandez-Sousa JM, Avila J (2000) The marine compound spisulosine, an inhibitor of cell proliferation, promotes the disassembly of actin stress fibers. Cancer Lett 152(1):23–29PubMedCrossRefGoogle Scholar
  18. Davidson G, Murphy S, Polke J et al (2012) Frequency of mutations in the genes associated with hereditary sensory and autonomic neuropathy in a UK cohort. J Neurol 259(8):1673–1685PubMedCentralPubMedCrossRefGoogle Scholar
  19. Dawkins JL, Hulme DJ, Brahmbhatt SB, Auer-Grumbach M, Nicholson GA (2001) Mutations in SPTLC1, encoding serine palmitoyltransferase, long chain base subunit-1, cause hereditary sensory neuropathy type I. Nat Genet 27(3):309–312PubMedCrossRefGoogle Scholar
  20. Dick KJ, Eckhardt M, Paisan-Ruiz C et al (2010) Mutation of FA2H underlies a complicated form of hereditary spastic paraplegia (SPG35). Hum Mutat 31(4):E1251–1260PubMedCrossRefGoogle Scholar
  21. Donkervoort S, Dastgir J, Hu Y et al (2014) Phenotypic variability of a likely FA2H founder mutation in a family with complicated hereditary spastic paraplegia. Clin Genet 85(4):393–395PubMedCrossRefGoogle Scholar
  22. Dyck PJ (1993) Neuronal atrophy and degeneration predominantly affecting peripheral sensory and autonomic neurons. In P J Dyck, K P Thomas, J W Griffin, P A Low, & J F Poduslo (Eds), Peripheral Neuropathy (3rd Editio, pp 1065–1093) Saunders PhilladelphiaGoogle Scholar
  23. Eckl KM, Tidhar R, Thiele H et al (2013) Impaired epidermal ceramide synthesis causes autosomal recessive congenital ichthyosis and reveals the importance of ceramide acyl chain length. J Invest Dermatol 133(9):2202–2211PubMedCrossRefGoogle Scholar
  24. Edvardson S, Hama H, Shaag A et al (2008) Mutations in the fatty acid 2-hydroxylase gene are associated with leukodystrophy with spastic paraparesis and dystonia. Am J Hum Genet 83(5):643–648PubMedCentralPubMedCrossRefGoogle Scholar
  25. Farukhi F, Dakkouri C, Wang H, Wiztnitzer M, Traboulsi EI (2006) Etiology of vision loss in ganglioside GM3 synthase deficiency. Ophthalmic Genet 27(3):89–91PubMedCrossRefGoogle Scholar
  26. Fishman PH, Max SR, Tallman JF, Brady RO, Maclaren NK, Cornblath M (1975) Deficient Ganglioside Biosynthesis: a novel human sphingolipidosis. Science 187(4171):68–70PubMedCrossRefGoogle Scholar
  27. Fragaki K, Ait-El-Mkadem S, Chaussenot A et al (2013) Refractory epilepsy and mitochondrial dysfunction due to GM3 synthase deficiency. Eur J Hum Genet 21(5):528–534PubMedCentralPubMedCrossRefGoogle Scholar
  28. Furukawa K, Iwamura K, Uchikawa M et al (2000) Molecular basis for the p phenotype. Identification of distinct and multiple mutations in the alpha 1,4-galactosyltransferase gene in Swedish and Japanese individuals. J Biol Chem 275(48):37752–37756PubMedCrossRefGoogle Scholar
  29. Futerman AH, van Meer G (2004) The cell biology of lysosomal storage disorders. Nat Rev Mol Cell Biol 5(7):554–565PubMedCrossRefGoogle Scholar
  30. Garanto A, Mandal NA, Egido-Gabas M et al (2013) Specific sphingolipid content decrease in Cerkl knockdown mouse retinas. Exp Eye Res 110:96–106PubMedCentralPubMedCrossRefGoogle Scholar
  31. Garanto A, Vicente-Tejedor J, Riera M et al (2012) Targeted knockdown of Cerkl, a retinal dystrophy gene, causes mild affectation of the retinal ganglion cell layer. Biochim Biophys Acta 1822(8):1258–1269PubMedCrossRefGoogle Scholar
  32. Garofalo K, Penno A, Schmidt BP et al (2011) Oral L-serine supplementation reduces production of neurotoxic deoxysphingolipids in mice and humans with hereditary sensory autonomic neuropathy type 1. J Clin Invest 121(12):4735–4745PubMedCentralPubMedCrossRefGoogle Scholar
  33. Garone C, Pippucci T, Cordelli DM et al (2011) FA2H-related disorders: a novel c.270 + 3A > T splice-site mutation leads to a complex neurodegenerative phenotype. Dev Med Child Neurol 53(10):958–961PubMedCrossRefGoogle Scholar
  34. Graf C, Niwa S, Muller M, Kinzel B, Bornancin F (2008) Wild-type levels of ceramide and ceramide-1-phosphate in the retina of ceramide kinase-like-deficient mice. Biochem Biophys Res Commun 373(1):159–163PubMedCrossRefGoogle Scholar
  35. Hama H (2010) Fatty acid 2-Hydroxylation in mammalian sphingolipid biology. Biochim Biophys Acta 1801(4):405–414PubMedCentralPubMedCrossRefGoogle Scholar
  36. Hammer MB, Eleuch-Fayache G, Schottlaender LV et al (2013) Mutations in GBA2 cause autosomal-recessive cerebellar ataxia with spasticity. Am J Hum Genet 92(2):245–251PubMedCentralPubMedCrossRefGoogle Scholar
  37. Hanada K (2003) Serine palmitoyltransferase, a key enzyme of sphingolipid metabolism. Biochim Biophys Acta 1632(1–3):16–30PubMedCrossRefGoogle Scholar
  38. Harlalka GV, Lehman A, Chioza B et al (2013) Mutations in B4GALNT1 (GM2 synthase) underlie a new disorder of ganglioside biosynthesis. Brain 136(Pt 12):3618–3624PubMedCentralPubMedCrossRefGoogle Scholar
  39. Harris PA, Roman GK, Moulds JJ, Bird GW, Shah NG (1982) An inherited RBC characteristic, NOR, resulting in erythrocyte polyagglutination. Vox Sang 42(3):134–140PubMedCrossRefGoogle Scholar
  40. Hellberg A, Poole J, Olsson ML (2002) Molecular basis of the globoside-deficient P (k) blood group phenotype. Identification of four inactivating mutations in the UDP-N-acetylgalactosamine: globotriaosylceramide 3-beta-N-acetylgalactosaminyltransferase gene. J Biol Chem 277(33):29455–29459PubMedCrossRefGoogle Scholar
  41. Hellberg A, Ringressi A, Yahalom V, Safwenberg J, Reid ME, Olsson ML (2004) Genetic heterogeneity at the glycosyltransferase loci underlying the GLOB blood group system and collection. Br J Haematol 125(4):528–536PubMedCrossRefGoogle Scholar
  42. Hellberg A, Schmidt-Melbye AC, Reid ME, Olsson ML (2008) Expression of a novel missense mutation found in the A4GALT gene of Amish individuals with the p phenotype. Transfusion 48(3):479–487PubMedCrossRefGoogle Scholar
  43. Hellberg A, Steffensen R, Yahalom V et al (2003) Additional molecular bases of the clinically important p blood group phenotype. Transfusion 43(7):899–907PubMedCrossRefGoogle Scholar
  44. Huehne K, Zweier C, Raab K et al (2008) Novel missense, insertion and deletion mutations in the neurotrophic tyrosine kinase receptor type 1 gene (NTRK1) associated with congenital insensitivity to pain with anhidrosis. Neuromuscul Disord 18(2):159–166PubMedCrossRefGoogle Scholar
  45. Imgrund S, Hartmann D, Farwanah H et al (2009) Adult ceramide synthase 2 (CERS2)-deficient mice exhibit myelin sheath defects, cerebellar degeneration, and hepatocarcinomas. J Biol Chem 284(48):33549–33560PubMedCentralPubMedCrossRefGoogle Scholar
  46. Jennemann R, Rabionet M, Gorgas K et al (2012) Loss of ceramide synthase 3 causes lethal skin barrier disruption. Hum Mol Genet 21(3):586–608PubMedCrossRefGoogle Scholar
  47. Kageyama-Yahara N, Riezman H (2006) Transmembrane topology of ceramide synthase in yeast. Biochem J 398(3):585–593PubMedCentralPubMedCrossRefGoogle Scholar
  48. Keusch JJ, Manzella SM, Nyame KA, Cummings RD, Baenziger JU (2000) Cloning of Gb3 synthase, the key enzyme in globo-series glycosphingolipid synthesis, predicts a family of alpha 1, 4-glycosyltransferases conserved in plants, insects, and mammals. J Biol Chem 275(33):25315–25321PubMedCrossRefGoogle Scholar
  49. Koda Y, Soejima M, Sato H, Maeda Y, Kimura H (2002) Three-base deletion and one-base insertion of the alpha (1,4) galactosyltransferase gene responsible for the P phenotype. Transfusion 42(1):48–51PubMedCrossRefGoogle Scholar
  50. Kojima Y, Fukumoto S, Furukawa K et al (2000) Molecular cloning of globotriaosylceramide/CD77 synthase, a glycosyltransferase that initiates the synthesis of globo series glycosphingolipids. J Biol Chem 275(20):15152–15156PubMedCrossRefGoogle Scholar
  51. Kruer MC, Paisan-Ruiz C, Boddaert N et al (2010) Defective FA2H leads to a novel form of neurodegeneration with brain iron accumulation (NBIA). Ann Neurol 68(5):611–618PubMedCrossRefGoogle Scholar
  52. Kusnierz-Alejska G, Duk M, Storry JR et al (1999) NOR polyagglutination and Sta glycophorin in one family: relation of NOR polyagglutination to terminal alpha-galactose residues and abnormal glycolipids. Transfusion 39(1):32–38PubMedCrossRefGoogle Scholar
  53. Laurá M, Eichler F, Hornemann T, et al (2012) Hereditary sensory and autonomic neuropathy type 1: correlation of severity and plasma atypical deoxy-sphyngoid bases. J Neurol Neurosurg Psychiatry 2012 83 (e1)Google Scholar
  54. Levy M, Futerman AH (2010) Mammalian ceramide synthases. IUBMB Life 62(5):347–356PubMedCentralPubMedGoogle Scholar
  55. Liao X, Luo Y, Zhan Z, et al (2013) SPG35 contributes to the second common subtype of AR-HSP in China: frequency analysis and functional characterization of FA2H gene mutations. Clin GenetGoogle Scholar
  56. Lingwood CA, Law H, Richardson S et al (1987) Glycolipid binding of purified and recombinant Escherichia coli produced verotoxin in vitro. J Biol Chem 262(18):8834–8839PubMedGoogle Scholar
  57. Littink KW, Koenekoop RK, van den Born LI et al (2010) Homozygosity mapping in patients with cone-rod dystrophy: novel mutations and clinical characterizations. Invest Ophthalmol Vis Sci 51(11):5943–5951PubMedCentralPubMedCrossRefGoogle Scholar
  58. Liu Y, Su Y, Wiznitzer M, Epifano O, Ladisch S (2008) Ganglioside depletion and EGF responses of human GM3 synthase-deficient fibroblasts. Glycobiology 18(8):593–601PubMedCrossRefGoogle Scholar
  59. Liu YC, Zheng L, Liu Y et al (2013) Pedigree investigation and genetic analysis of a case with p blood group. Zhonghua Yi Xue Yi Chuan Xue Za Zhi 30(6):736–738PubMedGoogle Scholar
  60. Lund N, Olsson ML, Ramkumar S et al (2009) The human P (k) histo-blood group antigen provides protection against HIV-1 infection. Blood 113(20):4980–4991PubMedCrossRefGoogle Scholar
  61. Martin E, Schule R, Smets K et al (2013) Loss of function of glucocerebrosidase GBA2 is responsible for motor neuron defects in hereditary spastic paraplegia. Am J Hum Genet 92(2):238–244PubMedCentralPubMedCrossRefGoogle Scholar
  62. Mizutani Y, Kihara A, Igarashi Y (2006) LASS3 (longevity assurance homologue 3) is a mainly testis-specific (dihydro) ceramide synthase with relatively broad substrate specificity. Biochem J 398(3):531–538PubMedCentralPubMedCrossRefGoogle Scholar
  63. Mosbech M, Olsen A, Neess D, et al (2014) Reduced ceramide synthase 2 activity causes progressive myoclonic epilepsy. Ann Clin Transl Neurol in pressGoogle Scholar
  64. Mullen TD, Hannun YA, Obeid LM (2012) Ceramide synthases at the centre of sphingolipid metabolism and biology. Biochem J 441(3):789–802PubMedCentralPubMedCrossRefGoogle Scholar
  65. Murphy SM, Ernst D, Wei Y et al (2013) Hereditary sensory and autonomic neuropathy type 1 (HSANI) caused by a novel mutation in SPTLC2. Neurology 80(23):2106–2111PubMedCentralPubMedCrossRefGoogle Scholar
  66. Niimi K, Nishioka C, Miyamoto T et al (2011) Impairment of neuropsychological behaviors in ganglioside GM3-knockout mice. Biochem Biophys Res Commun 406(4):524–528PubMedCrossRefGoogle Scholar
  67. Nishiguchi KM, Tearle RG, Liu YP et al (2013) Whole genome sequencing in patients with retinitis pigmentosa reveals pathogenic DNA structural changes and NEK2 as a new disease gene. Proc Natl Acad Sci U S A 110(40):16139–16144PubMedCentralPubMedCrossRefGoogle Scholar
  68. Okuda T, Tokuda N, Numata S et al (2006) Targeted disruption of Gb3/CD77 synthase gene resulted in the complete deletion of globo-series glycosphingolipids and loss of sensitivity to verotoxins. J Biol Chem 281(15):10230–10235PubMedCrossRefGoogle Scholar
  69. Penno A, Reilly MM, Houlden H et al (2010) Hereditary sensory neuropathy type 1 is caused by the accumulation of two neurotoxic sphingolipids. J Biol Chem 285(15):11178–11187PubMedCentralPubMedCrossRefGoogle Scholar
  70. Pewzner-Jung Y, Ben-Dor S, Futerman AH (2006) When do Lasses (longevity assurance genes) become CerS (ceramide synthases)? Insights into the regulation of ceramide synthesis. J Biol Chem 281(35):25001–25005PubMedCrossRefGoogle Scholar
  71. Pewzner-Jung Y, Brenner O, Braun S et al (2010a) A critical role for ceramide synthase 2 in liver homeostasis: II. insights into molecular changes leading to hepatopathy. J Biol Chem 285(14):10911–10923PubMedCentralPubMedCrossRefGoogle Scholar
  72. Pewzner-Jung Y, Park H, Laviad EL et al (2010b) A critical role for ceramide synthase 2 in liver homeostasis: I. alterations in lipid metabolic pathways. J Biol Chem 285(14):10902–10910PubMedCentralPubMedCrossRefGoogle Scholar
  73. Pierson TM, Simeonov DR, Sincan M et al (2012) Exome sequencing and SNP analysis detect novel compound heterozygosity in fatty acid hydroxylase-associated neurodegeneration. Eur J Hum Genet 20(4):476–479PubMedCentralPubMedCrossRefGoogle Scholar
  74. Potter KA, Kern MJ, Fullbright G et al (2011) Central nervous system dysfunction in a mouse model of FA2H deficiency. Glia 59(7):1009–1021PubMedCentralPubMedCrossRefGoogle Scholar
  75. Radner FP, Marrakchi S, Kirchmeier P et al (2013) Mutations in CERS3 cause autosomal recessive congenital ichthyosis in humans. PLoS Genet 9(6):e1003536PubMedCentralPubMedCrossRefGoogle Scholar
  76. Rautenstrauss B, Neitzel B, Muench C, Haas J, Holinski-Feder E (2009) Late onset hereditary sensory neuropathy type 1 (HSN1) caused by a novel p. C133R missense mutation in SPTLC1. Würzburg, Germany. In: 2009 Meeting of the Peripheral Nerve Society July 4–8, 2009 (p 290 of 381)Google Scholar
  77. Riera M, Burguera D, Garcia-Fernandez J, Gonzalez-Duarte R (2013) CERKL knockdown causes retinal degeneration in zebrafish. PLoS One 8(5):e64048PubMedCentralPubMedCrossRefGoogle Scholar
  78. Rotthier A, Auer-Grumbach M, Janssens K et al (2010) Mutations in the SPTLC2 subunit of serine palmitoyltransferase cause hereditary sensory and autonomic neuropathy type I. Am J Hum Genet 87(4):513–522PubMedCentralPubMedCrossRefGoogle Scholar
  79. Rotthier A, Baets J, De Vriendt E et al (2009) Genes for hereditary sensory and autonomic neuropathies: a genotype-phenotype correlation. Brain 132(Pt 10):2699–2711PubMedCentralPubMedCrossRefGoogle Scholar
  80. Rotthier A, Baets J, Timmerman V, Janssens K (2012) Mechanisms of disease in hereditary sensory and autonomic neuropathies. Nat Rev Neurol 8(2):73–85PubMedCrossRefGoogle Scholar
  81. Rotthier A, Penno A, Rautenstrauss B et al (2011) Characterization of two mutations in the SPTLC1 subunit of serine palmitoyltransferase associated with hereditary sensory and autonomic neuropathy type I. Hum Mutat 32(6):E2211–2225PubMedCrossRefGoogle Scholar
  82. Rupps R, Hukin J, Balicki M, Mercimek-Mahmutoglu S, Rolfs A, Dias C (2013) Novel Mutations in FA2H-Associated Neurodegeneration: An Underrecognized Condition? J Child Neurol 28(11):1500–1504PubMedCrossRefGoogle Scholar
  83. Sabourdy F, Kedjouar B, Sorli SC et al (2008) Functions of sphingolipid metabolism in mammals–lessons from genetic defects. Biochim Biophys Acta 1781(4):145–183PubMedCrossRefGoogle Scholar
  84. Sheikh KA, Sun J, Liu Y et al (1999) Mice lacking complex gangliosides develop Wallerian degeneration and myelination defects. Proc Natl Acad Sci U S A 96(13):7532–7537PubMedCentralPubMedCrossRefGoogle Scholar
  85. Simpson MA, Cross H, Proukakis C et al (2004) Infantile-onset symptomatic epilepsy syndrome caused by a homozygous loss-of-function mutation of GM3 synthase. Nat Genet 36(11):1225–1229PubMedCrossRefGoogle Scholar
  86. Steffensen R, Carlier K, Wiels J et al (2000) Cloning and expression of the histo-blood group Pk UDP-galactose: Ga1beta-4G1cbeta1-cer alpha1, 4-galactosyltransferase. Molecular genetic basis of the p phenotype. J Biol Chem 275(22):16723–16729PubMedCrossRefGoogle Scholar
  87. Suchanowska A, Kaczmarek R, Duk M et al (2012) A single point mutation in the gene encoding Gb3/CD77 synthase causes a rare inherited polyagglutination syndrome. J Biol Chem 287(45):38220–38230PubMedCentralPubMedCrossRefGoogle Scholar
  88. Suh BC, Hong YB, Nakhro K, Nam SH, Chung KW, Choi BO (2013) Early-onset severe hereditary sensory and autonomic neuropathy type 1 with S331F SPTLC1 mutation. Mol Med Rep 9(2):481–486PubMedGoogle Scholar
  89. Suh BC, Hong YB, Nakhro K, Nam SH, Chung KW, Choi BO (2014) Early-onset severe hereditary sensory and autonomic neuropathy type 1 with S331F SPTLC1 mutation. Mol Med Rep 9(2):481–486PubMedGoogle Scholar
  90. Takamiya K, Yamamoto A, Furukawa K et al (1996) Mice with disrupted GM2/GD2 synthase gene lack complex gangliosides but exhibit only subtle defects in their nervous system. Proc Natl Acad Sci U S A 93(20):10662–10667PubMedCentralPubMedCrossRefGoogle Scholar
  91. Tang Z, Wang Z, Wang Z, Ke T, Wang QK, Liu M (2009) Novel compound heterozygous mutations in CERKL cause autosomal recessive retinitis pigmentosa in a nonconsanguineous Chinese family. Arch Ophthalmol 127(8):1077–1078PubMedCrossRefGoogle Scholar
  92. Teufel A, Maass T, Galle PR, Malik N (2009) The longevity assurance homologue of yeast lag1 (Lass) gene family (review). Int J Mol Med 23(2):135–140PubMedGoogle Scholar
  93. Thuresson B, Westman JS, Olsson ML (2011) Identification of a novel A4GALT exon reveals the genetic basis of the P1/P2 histo-blood groups. Blood 117(2):678–687PubMedCrossRefGoogle Scholar
  94. Tonelli A, D’Angelo MG, Arrigoni F et al (2012) Atypical adult onset complicated spastic paraparesis with thin corpus callosum in two patients carrying a novel FA2H mutation. Eur J Neurol 19(11):e127–129PubMedCrossRefGoogle Scholar
  95. Tuson M, Marfany G, Gonzalez-Duarte R (2004) Mutation of CERKL, a novel human ceramide kinase gene, causes autosomal recessive retinitis pigmentosa (RP26). Am J Hum Genet 74(1):128–138PubMedCentralPubMedCrossRefGoogle Scholar
  96. Verhoeven K, Coen K, De Vriendt E et al (2004) SPTLC1 mutation in twin sisters with hereditary sensory neuropathy type I. Neurology 62(6):1001–1002PubMedCrossRefGoogle Scholar
  97. Vanni N, Fruscione F, Ferlazzo E et al. (2014) Impairment of ceramide synthesis causes a novel progressive myoclonus epilepsy. Ann Neurol (in press)Google Scholar
  98. Votsi C, Zamba-Papanicolaou E, Middleton LT, Pantzaris M, Christodoulou K (2014) A novel GBA2 gene missense mutation in spastic ataxia. Ann Hum Genet 78(1):13–22PubMedCrossRefGoogle Scholar
  99. Wakil SM, Monies DM, Ramzan K, et al (2013) Novel B4GALNT1 mutations in a complicated form of hereditary spastic paraplegia. Clin GenetGoogle Scholar
  100. Wang H, Bright A, Xin B, Bockoven JR, Paller AS (2013) Cutaneous dyspigmentation in patients with ganglioside GM3 synthase deficiency. Am J Med Genet A 161A(4):875–879PubMedCrossRefGoogle Scholar
  101. Wang YC, Chang CF, Lin HC et al (2011) Functional characterisation of a complex mutation in the alpha (1,4) galactosyltransferase gene in Taiwanese individuals with p phenotype. Transfus Med 21(2):84–89PubMedCrossRefGoogle Scholar
  102. Wei L, Ji YL, Luo H et al (2012) Serological and genetic study of a pedigree featuring a rare p phenotype. Zhonghua Yi Xue Yi Chuan Xue Za Zhi 29(6):701–704PubMedGoogle Scholar
  103. Westman JS, Hellberg A, Peyrard T, Hustinx H, Thuresson B, Olsson ML (2013) P1/P2 genotyping of known and novel null alleles in the P1PK and GLOB histo-blood group systems. Transfusion 53(11 Suppl 2):2928–2939PubMedGoogle Scholar
  104. Wilkinson PA, Simpson MA, Bastaki L et al (2005) A new locus for autosomal recessive complicated hereditary spastic paraplegia (SPG26) maps to chromosome 12p11.1-12q14. J Med Genet 42(1):80–82PubMedCentralPubMedCrossRefGoogle Scholar
  105. Xu YH, Barnes S, Sun Y, Grabowski GA (2010) Multi-system disorders of glycosphingolipid and ganglioside metabolism. J Lipid Res 51(7):1643–1675PubMedCentralPubMedCrossRefGoogle Scholar
  106. Yamashita T, Hashiramoto A, Haluzik M et al (2003) Enhanced insulin sensitivity in mice lacking ganglioside GM3. Proc Natl Acad Sci U S A 100(6):3445–3449PubMedCentralPubMedCrossRefGoogle Scholar
  107. Yan LX, Zhu FM, Xu XG, Hong XZ (2003) One base deletion of the alpha (1,4) galactosyltransferase gene responsible for p phenotype. Zhonghua Yi Xue Yi Chuan Xue Za Zhi 20(6):495–498PubMedGoogle Scholar
  108. Yildiz Y, Matern H, Thompson B et al (2006) Mutation of beta-glucosidase 2 causes glycolipid storage disease and impaired male fertility. J Clin Invest 116(11):2985–2994PubMedCentralPubMedCrossRefGoogle Scholar
  109. Yoshikawa M, Go S, Takasaki K et al (2009) Mice lacking ganglioside GM3 synthase exhibit complete hearing loss due to selective degeneration of the organ of Corti. Proc Natl Acad Sci U S A 106(23):9483–9488PubMedCentralPubMedCrossRefGoogle Scholar
  110. Zitomer NC, Mitchell T, Voss KA et al (2009) Ceramide synthase inhibition by fumonisin B1 causes accumulation of 1-deoxysphinganine: a novel category of bioactive 1-deoxysphingoid bases and 1-deoxydihydroceramides biosynthesized by mammalian cell lines and animals. J Biol Chem 284(8):4786–4795PubMedCentralPubMedCrossRefGoogle Scholar
  111. Zoller I, Meixner M, Hartmann D et al (2008) Absence of 2-hydroxylated sphingolipids is compatible with normal neural development but causes late-onset axon and myelin sheath degeneration. J Neurosci 28(39):9741–9754PubMedCrossRefGoogle Scholar
  112. Zuellig RA, Hornemann T, Othman A et al (2014) Deoxysphingolipids, novel biomarkers for type 2 diabetes, are cytotoxic for insulin-producing cells. Diabetes 63(4):1326–1339PubMedCrossRefGoogle Scholar

Copyright information

© SSIEM 2014

Authors and Affiliations

  • Leonardo Astudillo
    • 1
    • 2
    • 3
  • Frédérique Sabourdy
    • 1
    • 2
    • 4
  • Nicole Therville
    • 1
    • 2
  • Heiko Bode
    • 5
  • Bruno Ségui
    • 1
    • 2
  • Nathalie Andrieu-Abadie
    • 1
    • 2
  • Thorsten Hornemann
    • 5
  • Thierry Levade
    • 1
    • 2
    • 4
  1. 1.Centre de Recherches en Cancérologie de Toulouse (CRCT)Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1037ToulouseFrance
  2. 2.Equipe Labellisée Ligue Nationale Contre le Cancer 2013, Centre de Recherches en Cancérologie de Toulouse (CRCT)Université de ToulouseToulouseFrance
  3. 3.Service de Médecine InterneCHU PurpanToulouseFrance
  4. 4.Laboratoire de Biochimie Métabolique, Institut Fédératif de BiologieCHU PurpanToulouseFrance
  5. 5.Institute for Clinical Chemistry, University Hospital Zurich and Center for Integrative Human PhysiologyUniversity of ZurichZurichSwitzerland

Personalised recommendations