Advertisement

Journal of Inherited Metabolic Disease

, Volume 37, Issue 5, pp 735–743 | Cite as

Pharmacologic inhibition of L-tyrosine degradation ameliorates cerebral dopamine deficiency in murine phenylketonuria (PKU)

  • Cary O. Harding
  • Shelley R. Winn
  • K. Michael Gibson
  • Erland Arning
  • Teodoro Bottiglieri
  • Markus Grompe
Original Article

Abstract

Monoamine neurotransmitter deficiency has been implicated in the etiology of neuropsychiatric symptoms associated with chronic hyperphenylalaninemia in phenylketonuria (PKU). Two proposed explanations for neurotransmitter deficiency in PKU include first, that chronically elevated blood L-phenylalanine (Phe) inhibits the transport of L-tyrosine (Tyr) and L-tryptophan (Trp), the substrates for dopamine and serotonin synthesis respectively, into brain. In the second hypothesis, elevated Phe competitively inhibits brain tyrosine hydroxylase (TH) and tryptophan hydroxylase (TPH) activities, the rate limiting steps in dopamine and serotonin synthesis. Dietary supplementation with large neutral amino acids (LNAA) including Tyr and Trp has been recommended for individuals with chronically elevated blood Phe in an attempt to restore amino acid and monoamine homeostasis in brain. As a potential alternative treatment approach, we demonstrate that pharmacologic inhibition of Tyr degradation through oral administration of nitisinone (NTBC) yielded sustained increases in blood and brain Tyr, decreased blood and brain Phe, and consequently increased dopamine synthesis in a murine model of PKU. Our results suggest that Phe-mediated inhibition of TH activity is the likely mechanism of impaired dopamine synthesis in PKU. Pharmacologic inhibition of Tyr degradation may be a promising adjunct therapy for CNS monoamine neurotransmitter deficiency in hyperphenylalaninemic individuals with PKU.

Keywords

Tyrosine Hydroxylase Serotonin Synthesis Large Neutral Amino Acid NTBC Nitisinone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

PKU

Phenylketonuria

PAH

Phenylalanine hydroxylase

NTBC

2-(2-nitro-4-trifluoromethylbenzoyl)-1,3-cyclohexanedione

Phe

L-phenylalanine

Tyr

L-tyrosine

Trp

L-tryptophan

LNAA

Large neutral amino acids

L-DOPA

L-3,4-dihydroxyphenylalanine

DA

Dopamine

DOPAC

L-3,4-dihydroxyphenylacetic acid

3-MT

3-methoxytyramine

HVA

Homovanillic acid

5-HTP

L-5-hydroxytryptophan

5-HIAA

5-hydroxyindoleacetic acid

Notes

Acknowledgments

This work was supported in part by NIH Grants R01 DK059371 and R01 NS080866 and a grant from the National PKU Alliance (NPKUA, www.npkua.org).

We thank Gloria Baca, Baoyu Lin, Lindsey Stetson, and Katie Cobb for able technical assistance and Dr. Melanie Gillingham for critical review of the manuscript.

Conflict of interest

None declared.

References

  1. Azen CG, Koch R et al (1991) Intellectual development in 12-year-old children treated for phenylketonuria. Am J Dis Child 145(1):35–39PubMedGoogle Scholar
  2. Batshaw ML, Valle D et al (1981) Unsuccessful treatment of phenylketonuria with tyrosine. J Pediatr 99(1):159–160PubMedCrossRefGoogle Scholar
  3. Choi TB, Pardridge WM (1986) Phenylalanine transport at the human blood–brain barrier. Studies with isolated human brain capillaries. J Biol Chem 261(14):6536–6541PubMedGoogle Scholar
  4. Christ S, Huijbregts S et al (2010) Executive function in early-treated phenylketonuria: profile and underlying mechanisms. Mol Genet Metab 99(Suppl 1):S22–S32PubMedCrossRefGoogle Scholar
  5. Christensen HN, Streicher JA et al (1948) Effects of feeding individual amino acids upon the distribution of other amino acids between cells and extracellular fluid. J Biol Chem 172(2):515–524PubMedGoogle Scholar
  6. De Groot MJ, Hoeksma M et al (2010) Pathogenesis of cognitive dysfunction in phenylketonuria: review of hypotheses. Mol Genet Metab 99(Suppl 1):S86–S89PubMedCrossRefGoogle Scholar
  7. Feillet F, Van Spronsen FJ et al (2010) Challenges and pitfalls in the management of phenylketonuria. Pediatrics 126(2):333–341PubMedCrossRefGoogle Scholar
  8. Harding C (2008) Progress toward cell-directed therapy for phenylketonuria. Clin Genet 74(2):97–104PubMedCentralPubMedCrossRefGoogle Scholar
  9. Harding CO, Wild K et al (1998) Metabolic engineering as therapy for inborn errors of metabolism - development of mice with phenylalanine hydroxylase expression in muscle. Gene Ther 5(5):677–683PubMedCentralPubMedCrossRefGoogle Scholar
  10. Introne WJ, Perry MB et al (2011) A 3-Year randomized therapeutic trial of nitisinone in alkaptonuria. Mol Genet Metab 103(4):307–314PubMedCentralPubMedCrossRefGoogle Scholar
  11. Kanai Y, Segawa H et al (1998) Expression cloning and characterization of a transporter for large neutral amino acids activated by the heavy chain of 4f2 antigen (Cd98). J Biol Chem 273(37):23629–23632PubMedCrossRefGoogle Scholar
  12. Koshimura K, Miwa S et al (1990) Enhancement of dopamine release in vivo from the rat striatum by dialytic perfusion of 6r-L-erythro-5,6,7,8-tetrahydrobiopterin. J Neurochem 54(4):1391–1397PubMedCrossRefGoogle Scholar
  13. Lindstedt S, Holme E et al (1992) Treatment of hereditary tyrosinaemia type I by inhibition of 4-hydroxyphenylpyruvate dioxygenase. Lancet 340(8823):813–817PubMedCrossRefGoogle Scholar
  14. Lou HC, Lykkelund C et al (1987) Increased vigilance and dopamine synthesis by large doses of tyrosine or phenylalanine restriction in phenylketonuria. Acta Paediatr Scand 76(4):560–565PubMedCrossRefGoogle Scholar
  15. Lykkelund C, Nielsen JB et al (1988) Increased neurotransmitter biosynthesis in phenylketonuria induced by phenylalanine restriction or by supplementation of unrestricted diet with large amounts of tyrosine. Eur J Pediatr 148(3):238–245PubMedCrossRefGoogle Scholar
  16. Mastroberardino L, Spindler B et al (1998) Amino-acid transport by heterodimers of 4f2hc/Cd98 and members of a Permease family. Nature 395(6699):288–291PubMedCrossRefGoogle Scholar
  17. Matalon R, Michals-Matalon K et al (2006) Large neutral amino acids in the treatment of phenylketonuria (Pku). J Inherit Metab Dis 29(6):732–738PubMedCrossRefGoogle Scholar
  18. McDonald JD, Bode VC et al (1990) Pahhph-5: a mouse mutant deficient in phenylalanine hydroxylase. Proc Natl Acad Sci U S A 87(5):1965–1967PubMedCentralPubMedCrossRefGoogle Scholar
  19. Miyamoto M, Fitzpatrick T (1957) Competitive inhibition of mammalian tyrosinase by phenylalanine and its relationship to hair pigmentation in phenylketonuria. Nature 179(4552):199–200PubMedCrossRefGoogle Scholar
  20. Ogburn KD, Bottiglieri T et al (2006) Prostaglandin J2 reduces Catechol-O-Methyltransferase activity and enhances dopamine toxicity in neuronal cells. Neurobiol Dis 22(2):294–301PubMedCrossRefGoogle Scholar
  21. Pascucci T, Ventura R et al (2002) Deficits in brain serotonin synthesis in a genetic mouse model of phenylketonuria. Neuroreport 13(18):2561–2564PubMedCrossRefGoogle Scholar
  22. Pascucci T, Andolina D et al (2009) 5-hydroxytryptophan rescues serotonin response to stress in prefrontal cortex of hyperphenylalaninaemic mice. Int J Neuropsychopharmacol 12(8):1067–1079PubMedCrossRefGoogle Scholar
  23. Pietz J, Kreis R et al (1999) Large neutral amino acids block phenylalanine transport into brain tissue in patients with phenylketonuria. J Clin Invest 103(8):1169–1178PubMedCentralPubMedCrossRefGoogle Scholar
  24. Puglisi-Allegra S, Cabib S et al (2000) Dramatic brain aminergic deficit in a genetic mouse model of phenylketonuria. Neuroreport 11(6):1361–1364PubMedCrossRefGoogle Scholar
  25. Slocum RH, Cummings JG (1991) Amino acid analysis of physiological samples. In: Hommes FA (ed) Techniques in diagnostic human biochemical genetics: A laboratory manual. Wiley-Liss, New York, pp 87–126Google Scholar
  26. Thompson AJ, Smith I et al (1990) Neurological deterioration in young adults with phenylketonuria. Lancet 336:602–605PubMedCrossRefGoogle Scholar
  27. Vanzutphen KH, Packman W et al (2007) Executive functioning in children and adolescents with phenylketonuria. Clin Genet 72(1):13–18PubMedCrossRefGoogle Scholar
  28. Vogel KR, Arning E et al (2013) Non-physiological amino acid (Npaa) therapy targeting brain phenylalanine reduction: pilot studies in Pahenu2 mice. J Inherit Metab Dis 36(3):513–523PubMedCentralPubMedCrossRefGoogle Scholar
  29. Walter JH, White FJ (2004) Blood phenylalanine control in adolescents with phenylketonuria. Int J Adolesc Med Health 16(1):41–45PubMedCrossRefGoogle Scholar

Copyright information

© SSIEM and Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Cary O. Harding
    • 1
  • Shelley R. Winn
    • 1
  • K. Michael Gibson
    • 2
  • Erland Arning
    • 3
  • Teodoro Bottiglieri
    • 3
  • Markus Grompe
    • 4
  1. 1.Department of Molecular and Medical GeneticsOregon Health & Science UniversityPortlandUSA
  2. 2.Section of Clinical Pharmacology, College of PharmacyWashington State UniversitySpokaneUSA
  3. 3.Institute of Metabolic DiseaseBaylor Research InstituteDallasUSA
  4. 4.Department of PediatricsOregon Health & Science UniversityPortlandUSA

Personalised recommendations