Journal of Inherited Metabolic Disease

, Volume 37, Issue 2, pp 165–176 | Cite as

Therapeutic hepatocyte transplant for inherited metabolic disorders: functional considerations, recent outcomes and future prospects

  • Kara R. Vogel
  • Andrew A. Kennedy
  • Luke A. Whitehouse
  • K. Michael Gibson


The applications, outcomes and future strategies of hepatocyte transplantation (HTx) as a corrective intervention for inherited metabolic disease (IMD) are described. An overview of HTx in IMDs, as well as preclinical evaluations in rodent and other mammalian models, is summarized. Current treatments for IMDs are highlighted, along with short- and long-term outcomes and the potential for HTx to supplement or supplant these treatments. Finally, the advantages and disadvantages of HTx are presented, highlighted by long-term challenges with interorgan engraftment and expansion of transplanted cells, in addition to the future prospects of stem cell transplants. At present, the utility of HTx is represented by the potential to bridge patients with life-threatening liver disease to organ transplantation, especially as an adjuvant intervention where severe organ shortages continue to pose challenges.


Phytanic Acid Orthotopic Liver Transplantation Familial Hypercholesterolemia Maple Syrup Urine Disease Maple Syrup Urine Disease 



Alanine glyoxylate transaminase


Auxiliary partial orthotopic liver transplant


Argininosuccinate lyase


Argininosuccinate synthetase


Branched-chain amino acids


Branched-chain keto acids


Branched-chain ketoacid dehydrogenase complex


Crigler-Najjar syndrome type I


Carbamoyl phosphate synthetase I


Fumarylacetoacetate hydrolase deficiency (tyrosinemia type I)


Glycogen storage disease




High density lipoprotein


Hepatic growth factor


Hepatocyte transplantation


α-Ketoisocaproic acid


Low density lipoprotein


Maple syrup urine disease


N-acetylglutamate synthetase


Orthotopic liver transplantation


Ornithine transcarbamylase


Progressive familial intrahepatic cholestasis




Primary Hyperoxaluria




Bilirubin-UDP-glucuronosyl transferase


Conflict of interest



  1. Al-Dhalimy M, Overturf K, Finegold M, Grompe M (2002) Long-term therapy with NTBC and tyrosine-restricted diet in a murine model of hereditary tyrosinemia type I. Mol Genet Metab 75:38–45. doi: 10.1006/mgme.2001.3266 PubMedCrossRefGoogle Scholar
  2. Allian-Sauer MU, Falko JM (2012) New treatments on the horizon for familial hypercholesterolemia. Expert Rev Cardiovasc Ther 10:1227–1237. doi: 10.1586/erc.12.112 PubMedCrossRefGoogle Scholar
  3. Ambrosino G, Varotto S, Strom SC et al (2005) Isolated hepatocyte transplantation for Crigler-Najjar syndrome type 1. Cell Transplant 14:151–157PubMedCrossRefGoogle Scholar
  4. Beck BB, Habbig S, Dittrich K et al (2012) Liver cell transplantation in severe infantile oxalosis–a potential bridging procedure to orthotopic liver transplantation? Nephrol Dial Transplant 27:2984–2989. doi: 10.1093/ndt/gfr776 PubMedCrossRefGoogle Scholar
  5. Bélanger-Quintana A, Burlina A, Harding CO, Muntau AC (2011) Up to date knowledge on different treatment strategies for phenylketonuria. Mol Genet Metab 104(Suppl):S19–S25. doi: 10.1016/j.ymgme.2011.08.009 PubMedCrossRefGoogle Scholar
  6. Burlina AB (2004) Hepatocyte transplantation for inborn errors of metabolism. J Inherit Metab Dis 27:373–383. doi: 10.1023/B:BOLI.0000031095.57411.8d PubMedCrossRefGoogle Scholar
  7. Campeau PM, Pivalizza PJ, Miller G et al (2010) Early orthotopic liver transplantation in urea cycle defects: follow up of a developmental outcome study. Mol Genet Metab 100(Suppl 1):S84–S87. doi: 10.1016/j.ymgme.2010.02.012 PubMedCentralPubMedCrossRefGoogle Scholar
  8. Chen H-L, Chen H-L, Yuan R-H et al (2012) Hepatocyte transplantation in bile salt export pump-deficient mice: selective growth advantage of donor hepatocytes under bile acid stress. J Cell Mol Med 16:2679–2689. doi: 10.1111/j.1582-4934.2012.01586.x PubMedCrossRefGoogle Scholar
  9. Chistiakov DA (2012) Liver regenerative medicine: advances and challenges. Cells Tissues Organs (Print) 196:291–312. doi: 10.1159/000335697 CrossRefGoogle Scholar
  10. Crigler JF, Najjar VA (1952) Congenital familial nonhemolytic jaundice with kernicterus. Pediatrics 10:169–180PubMedGoogle Scholar
  11. Cubero FJ, Maganto P, Mula N et al (2007) Functional response of hepatocytes transplanted into Gunn rats stimulated with thyroid hormone. Dig Dis Sci 52:210–216. doi: 10.1007/s10620-006-9614-2 PubMedCrossRefGoogle Scholar
  12. De Vree JM, Ottenhoff R, Bosma PJ et al (2000) Correction of liver disease by hepatocyte transplantation in a mouse model of progressive familial intrahepatic cholestasis. Gastroenterology 119:1720–1730PubMedCrossRefGoogle Scholar
  13. Dhawan A, Mitry RR, Hughes RD et al (2004) Hepatocyte transplantation for inherited factor VII deficiency. Transplantation 78:1812–1814PubMedCrossRefGoogle Scholar
  14. Dyer CA (1999) Pathophysiology of phenylketonuria. Ment Retard Dev Disabil Res Rev 5:104–112. doi: 10.1002/(SICI)1098-2779(1999)5:2<104::AID-MRDD2>3.0.CO;2–7 CrossRefGoogle Scholar
  15. Ellis SR, Hulton SA, McKiernan PJ et al (2001) Combined liver-kidney transplantation for primary hyperoxaluria type 1 in young children. Nephrol Dial Transplant 16:348–354PubMedCrossRefGoogle Scholar
  16. Erker L, Azuma H, Lee AY et al (2010) Therapeutic liver reconstitution with murine cells isolated long after death. Gastroenterology 139:1019–1029. doi: 10.1053/j.gastro.2010.05.082 PubMedCentralPubMedCrossRefGoogle Scholar
  17. Fenu M, Liggi M, Demelia E et al (2012) Kayser-Fleischer ring in Wilson’s disease: a cohort study. Eur J Intern Med 23:e150–e156. doi: 10.1016/j.ejim.2012.04.005 PubMedCrossRefGoogle Scholar
  18. Fox IJ, Chowdhury JR, Kaufman SS et al (1998) Treatment of the Crigler-Najjar syndrome type I with hepatocyte transplantation. N Engl J Med 338:1422–1426. doi: 10.1056/NEJM199805143382004 PubMedCrossRefGoogle Scholar
  19. Gautschi M, Pavlovic M, Nuoffer J-M (2012) Fatal myocardial infarction at 4.5 years in a case of homozygous familial hypercholesterolaemia. JIMD Rep 2:45–50. doi: 10.1007/8904_2011_45 PubMedCentralPubMedCrossRefGoogle Scholar
  20. Grossman M, Raper SE, Kozarsky K et al (1994) Successful ex vivo gene therapy directed to liver in a patient with familial hypercholesterolaemia. Nat Genet 6:335–341. doi: 10.1038/ng0494-335 PubMedCrossRefGoogle Scholar
  21. Guha C, Parashar B, Deb NJ et al (2002) Normal hepatocytes correct serum bilirubin after repopulation of Gunn rat liver subjected to irradiation/partial resection. Hepatology 36:354–362. doi: 10.1053/jhep.2002.34516 PubMedCrossRefGoogle Scholar
  22. Guha C, Yamanouchi K, Jiang J et al (2005) Feasibility of hepatocyte transplantation-based therapies for primary hyperoxalurias. Am J Nephrol 25:161–170. doi: 10.1159/000085408 PubMedCrossRefGoogle Scholar
  23. Hamman K, Clark H, Montini E et al (2005) Low therapeutic threshold for hepatocyte replacement in murine phenylketonuria. Mol Ther 12:337–344. doi: 10.1016/j.ymthe.2005.03.025 PubMedCentralPubMedCrossRefGoogle Scholar
  24. Hamman KJ, Winn SR, Harding CO (2011) Hepatocytes from wild-type or heterozygous donors are equally effective in achieving successful therapeutic liver repopulation in murine phenylketonuria (PKU). Mol Genet Metab 104:235–240. doi: 10.1016/j.ymgme.2011.07.027 PubMedCentralPubMedCrossRefGoogle Scholar
  25. Harding CO (2010) New era in treatment for phenylketonuria: pharmacologic therapy with sapropterin dihydrochloride. Biologics 4:231–236PubMedCentralPubMedGoogle Scholar
  26. Homanics GE, Skvorak K, Ferguson C et al (2006) Production and characterization of murine models of classic and intermediate maple syrup urine disease. BMC Med Genet 7:33. doi: 10.1186/1471-2350-7-33 PubMedCentralPubMedCrossRefGoogle Scholar
  27. Hoppe B (2012) An update on primary hyperoxaluria. Nat Rev Nephrol 8:467–475. doi: 10.1038/nrneph.2012.113 PubMedCrossRefGoogle Scholar
  28. Horslen SP, Fox IJ (2004) Hepatocyte transplantation. Transplantation 77:1481–1486PubMedCrossRefGoogle Scholar
  29. Horslen SP, McCowan TC, Goertzen TC et al (2003) Isolated hepatocyte transplantation in an infant with a severe urea cycle disorder. Pediatrics 111:1262–1267PubMedCrossRefGoogle Scholar
  30. Huether SE (2010) Structure and function of the digestive system. In: McCance KL, Huether SE, Brashers VL, Rote NS (eds) Pathophysiology: The biological basis for disease in adults and children, 6th edn, chap 38. Mosby Elsevier, pp 1420–1451Google Scholar
  31. Irani AN, Malhi H, Slehria S et al (2001) Correction of liver disease following transplantation of normal rat hepatocytes into Long-Evans cinnamon rats modeling Wilson’s disease. Mol Ther 3:302–309. doi: 10.1006/mthe.2001.0271 PubMedCrossRefGoogle Scholar
  32. Jacquemin E (2012) Progressive familial intrahepatic cholestasis. Clin Res Hepatol Gastroenterol 36(Suppl 1):S26–S35. doi: 10.1016/S2210-7401(12)70018-9 PubMedCrossRefGoogle Scholar
  33. Jankowska I, Socha P (2012) Progressive familial intrahepatic cholestasis and inborn errors of bile acid synthesis. Clin Res Hepatol Gastroenterol 36:271–274. doi: 10.1016/j.clinre.2012.03.020 PubMedCrossRefGoogle Scholar
  34. Jiang J, Salido EC, Guha C et al (2008) Correction of hyperoxaluria by liver repopulation with hepatocytes in a mouse model of primary hyperoxaluria type-1. Transplantation 85:1253–1260. doi: 10.1097/TP.0b013e31816de49e PubMedCrossRefGoogle Scholar
  35. Joseph B, Kapoor S, Schilsky ML, Gupta S (2009) Bile salt-induced pro-oxidant liver damage promotes transplanted cell proliferation for correcting Wilson disease in the Long-Evans Cinnamon rat model. Hepatology 49:1616–1624. doi: 10.1002/hep.22792 PubMedCentralPubMedCrossRefGoogle Scholar
  36. Kakaei F, Nikeghbalian S, Kazemi K et al (2009) Liver transplantation for homozygous familial hypercholesterolemia: two case reports. Transplant Proc 41:2939–2941. doi: 10.1016/j.transproceed.2009.07.028 PubMedCrossRefGoogle Scholar
  37. Karnezis AN, Dorokhov M, Grompe M, Zhu L (2001) Loss of p27(Kip1) enhances the transplantation efficiency of hepatocytes transferred into diseased livers. J Clin Invest 108:383–390. doi: 10.1172/JCI11933 PubMedCentralPubMedCrossRefGoogle Scholar
  38. Kawashita Y, Guha C, Moitra R et al (2008) Hepatic repopulation with stably transduced conditionally immortalized hepatocytes in the Gunn rat. J Hepatol 49:99–106. doi: 10.1016/j.jhep.2008.02.020 PubMedCrossRefGoogle Scholar
  39. Kim PK (2009) Peroxisome assembly, degradation, and disease. In: Medicine IMASSE of PV of (ed) The liver. Wiley, New York, pp 191–200Google Scholar
  40. Kochanek K, Xu J, Murphy S, Minino A (2011) Deaths: Final Data for 2009. National Vital Statistics Reports 60Google Scholar
  41. LaClair CE, Ney DM, MacLeod EL, Etzel MR (2009) Purification and use of glycomacropeptide for nutritional management of phenylketonuria. J Food Sci 74:E199–E206. doi: 10.1111/j.1750-3841.2009.01134.x PubMedCentralPubMedCrossRefGoogle Scholar
  42. Lee K-W, Lee J-H, Shin SW et al (2007) Hepatocyte transplantation for glycogen storage disease type Ib. Cell Transplant 16:629–637PubMedGoogle Scholar
  43. Legido-Quigley C, Cloarec O, Parker DA et al (2009) First example of hepatocyte transplantation to alleviate ornithine transcarbamylase deficiency, monitored by NMR-based metabonomics. Bioanalysis 1:1527–1535. doi: 10.4155/bio.09.112 PubMedCrossRefGoogle Scholar
  44. Li AP (2007) Human hepatocytes: isolation, cryopreservation and applications in drug development. Chem Biol Interact 168:16–29. doi: 10.1016/j.cbi.2007.01.001 PubMedCrossRefGoogle Scholar
  45. Lysy P-A, Najimi M, Stephenne X et al (2008) Liver cell transplantation for Crigler-Najjar syndrome type I: update and perspectives. World J Gastroenterol 14:3464–3470PubMedCentralPubMedCrossRefGoogle Scholar
  46. MacDonald A (2000) Diet and compliance in phenylketonuria. Eur J Pediatr 159(Suppl 2):S136–S141PubMedCrossRefGoogle Scholar
  47. Malhi H, Irani AN, Volenberg I et al (2002) Early cell transplantation in LEC rats modeling Wilson’s disease eliminates hepatic copper with reversal of liver disease. Gastroenterology 122:438–447PubMedCrossRefGoogle Scholar
  48. Mazariegos GV, Morton DH, Sindhi R et al (2012) Liver transplantation for classical maple syrup urine disease: long-term follow-up in 37 patients and comparative United Network for Organ Sharing experience. J Pediatr 160:116–121.e1. doi: 10.1016/j.jpeds.2011.06.033 PubMedCentralPubMedCrossRefGoogle Scholar
  49. McCandless DW (2011) The Gunn rat model. Kernicterus. Humana Press, pp 51–64Google Scholar
  50. Meyburg J, Hoffmann GF (2010) Liver, liver cell and stem cell transplantation for the treatment of urea cycle defects. Mol Genet Metab 100(Suppl 1):S77–S83. doi: 10.1016/j.ymgme.2010.01.011 PubMedCrossRefGoogle Scholar
  51. Meyburg J, Das AM, Hoerster F et al (2009) One liver for four children: first clinical series of liver cell transplantation for severe neonatal urea cycle defects. Transplantation 87:636–641. doi: 10.1097/TP.0b013e318199936a PubMedCrossRefGoogle Scholar
  52. Mitry RR, Dhawan A, Hughes RD et al (2004) One liver, three recipients: segment IV from split-liver procedures as a source of hepatocytes for cell transplantation. Transplantation 77:1614–1616PubMedCrossRefGoogle Scholar
  53. Mohamadnejad M, Pournasr B, Bagheri M et al (2010) Transplantation of allogeneic bone marrow mesenchymal stromal cell-derived hepatocyte-like cells in homozygous familial hypercholesterolemia. Cytotherapy 12:566–568. doi: 10.3109/14653240903511143 PubMedCrossRefGoogle Scholar
  54. Muraca M, Gerunda G, Neri D et al (2002) Hepatocyte transplantation as a treatment for glycogen storage disease type 1a. Lancet 359:317–318. doi: 10.1016/S0140-6736(02)07529-3 PubMedCrossRefGoogle Scholar
  55. Muraca M, Ferraresso C, Vilei MT et al (2007) Liver repopulation with bone marrow derived cells improves the metabolic disorder in the Gunn rat. Gut 56:1725–1735. doi: 10.1136/gut.2007.127969 PubMedCentralPubMedCrossRefGoogle Scholar
  56. Okura H, Saga A, Fumimoto Y et al (2011) Transplantation of human adipose tissue-derived multilineage progenitor cells reduces serum cholesterol in hyperlipidemic Watanabe rabbits. Tissue Eng Part C Methods 17:145–154. doi: 10.1089/ten.TEC.2010.0139 PubMedCentralPubMedCrossRefGoogle Scholar
  57. Olivarez L, Caggana M, Pass KA et al (2001) Estimate of the frequency of Wilson’s disease in the US Caucasian population: a mutation analysis approach. Ann Hum Genet 65:459–463. doi: 10.1017/S0003480001008764 PubMedCrossRefGoogle Scholar
  58. Ordonez MP, Goldstein LSB (2012) Using human-induced pluripotent stem cells to model monogenic metabolic disorders of the liver. Semin Liver Dis 32:298–306. doi: 10.1055/s-0032-1329898 PubMedGoogle Scholar
  59. Orejuela D, Jorquera R, Bergeron A et al (2008) Hepatic stress in hereditary tyrosinemia type 1 (HT1) activates the AKT survival pathway in the fah−/− knockout mice model. J Hepatol 48:308–317. doi: 10.1016/j.jhep.2007.09.014 PubMedCrossRefGoogle Scholar
  60. Overturf K, Al-Dhalimy M, Finegold M, Grompe M (1999) The repopulation potential of hepatocyte populations differing in size and prior mitotic expansion. Am J Pathol 155:2135–2143. doi: 10.1016/S0002-9440(10)65531-9 PubMedCentralPubMedCrossRefGoogle Scholar
  61. Ozçay F, Alehan F, Sevmiş S et al (2009) Living related liver transplantation in Crigler-Najjar syndrome type 1. Transplant Proc 41:2875–2877. doi: 10.1016/j.transproceed.2009.07.025 PubMedCrossRefGoogle Scholar
  62. Park SM, Vo K, Lallier M et al (2006) Hepatocyte transplantation in the Long Evans cinnamon rat model of Wilson’s disease. Cell Transplant 15:13–22PubMedCrossRefGoogle Scholar
  63. Paulk NK, Wursthorn K, Haft A et al (2012) In vivo selection of transplanted hepatocytes by pharmacological inhibition of fumarylacetoacetate hydrolase in wild-type mice. Mol Ther 20:1981–1987. doi: 10.1038/mt.2012.154 PubMedCentralPubMedCrossRefGoogle Scholar
  64. Peña MMO, Lee J, Thiele DJ (1999) A delicate balance: homeostatic control of copper uptake and distribution. J Nutr 129:1251–1260PubMedGoogle Scholar
  65. Popov Y, Patsenker E, Fickert P et al (2005) Mdr2 (Abcb4)−/− mice spontaneously develop severe biliary fibrosis via massive dysregulation of pro- and antifibrogenic genes. J Hepatol 43:1045–1054. doi: 10.1016/j.jhep.2005.06.025 PubMedCrossRefGoogle Scholar
  66. Puppi J, Tan N, Mitry RR et al (2008) Hepatocyte transplantation followed by auxiliary liver transplantation—a novel treatment for ornithine transcarbamylase deficiency. Am J Transplant 8:452–457. doi: 10.1111/j.1600-6143.2007.02058.x PubMedCrossRefGoogle Scholar
  67. Puppi J, Strom SC, Hughes RD et al (2012) Improving the techniques for human hepatocyte transplantation: report from a consensus meeting in London. Cell Transplant 21:1–10. doi: 10.3727/096368911X566208 PubMedCrossRefGoogle Scholar
  68. Quaglia A, Lehec SC, Hughes RD, Mitry RR, Knisely AS, Devereaux S, Richards J, Rela M, Heaton ND, Portmann BC, Dhawan A (2008) Liver after hepatocyte transplantation for liver-based metabolic disorders in children. Cell Transplant 17:1403–1414PubMedCrossRefGoogle Scholar
  69. Rela M, Muiesan P, Vilca-Melendez H et al (1999) Auxiliary partial orthotopic liver transplantation for Crigler-Najjar syndrome type I. Ann Surg 229:565–569PubMedCentralPubMedCrossRefGoogle Scholar
  70. Ribes-Koninckx C, Pareja Ibars E, Agrasot MAC et al (2012) Clinical outcome of hepatocyte transplantation in four pediatric patients with inherited metabolic diseases. Cell Transplant. doi: 10.3727/069368912X637505 Google Scholar
  71. Sampietro M, Iolascon A (1999) Molecular pathology of Crigler-Najjar type I and II and Gilbert’s syndromes. Haematologica 84:150–157PubMedGoogle Scholar
  72. Schönberger S, Schweiger B, Schwahn B et al (2004) Dysmyelination in the brain of adolescents and young adults with maple syrup urine disease. Mol Genet Metab 82:69–75. doi: 10.1016/j.ymgme.2004.01.016 PubMedCrossRefGoogle Scholar
  73. Skvorak KJ, Hager EJ, Arning E et al (2009a) Hepatocyte transplantation (HTx) corrects selected neurometabolic abnormalities in murine intermediate maple syrup urine disease (iMSUD). Biochim Biophys Acta 1792:1004–1010. doi: 10.1016/j.bbadis.2009.08.006 PubMedCentralPubMedCrossRefGoogle Scholar
  74. Skvorak KJ, Paul HS, Dorko K et al (2009b) Hepatocyte transplantation improves phenotype and extends survival in a murine model of intermediate maple syrup urine disease. Mol Ther 17:1266–1273. doi: 10.1038/mt.2009.99 PubMedCentralPubMedCrossRefGoogle Scholar
  75. Skvorak KJ, Dorko K, Marongiu F et al (2013a) Placental stem cell correction of murine intermediate maple syrup urine disease. Hepatology 57:1017–1023. doi: 10.1002/hep.26150 PubMedCentralPubMedCrossRefGoogle Scholar
  76. Skvorak KJ, Dorko K, Marongiu F, Tahan V, Hansel MC, Gramignoli R, Arning E, Bottiglieri T, Gibson KM, Strom SC (2013b) Improved amino acid, bioenergetic metabolite and neurotransmitter profiles following human amnion epithelial cell transplant in intermediate maple syrup urine disease. Mol Genet Metab 109:132–138PubMedCrossRefGoogle Scholar
  77. Sokal EM, Smets F, Bourgois A et al (2003) Hepatocyte transplantation in a 4-year-old girl with peroxisomal biogenesis disease: technique, safety, and metabolic follow-up. Transplantation 76:735–738. doi: 10.1097/01.TP.0000077420.81365.53 PubMedCrossRefGoogle Scholar
  78. Stéphenne X, Najimi M, Smets F et al (2005) Cryopreserved liver cell transplantation controls ornithine transcarbamylase deficient patient while awaiting liver transplantation. Am J Transplant 5:2058–2061. doi: 10.1111/j.1600-6143.2005.00935.x PubMedCrossRefGoogle Scholar
  79. Stéphenne X, Najimi M, Sibille C et al (2006) Sustained engraftment and tissue enzyme activity after liver cell transplantation for argininosuccinate lyase deficiency. Gastroenterology 130:1317–1323. doi: 10.1053/j.gastro.2006.01.008 PubMedCrossRefGoogle Scholar
  80. Stéphenne X, Debray FG, Smets F et al (2012) Hepatocyte transplantation using the domino concept in a child with tetrabiopterin nonresponsive phenylketonuria. Cell Transplant 21:2765–2770. doi: 10.3727/096368912X653255 PubMedCrossRefGoogle Scholar
  81. Strauss KA, Mazariegos GV, Sindhi R et al (2006a) Elective liver transplantation for the treatment of classical maple syrup urine disease. Am J Transplant 6:557–564. doi: 10.1111/j.1600-6143.2005.01209.x PubMedCrossRefGoogle Scholar
  82. Strauss KA, Robinson DL, Vreman HJ et al (2006b) Management of hyperbilirubinemia and prevention of kernicterus in 20 patients with Crigler-Najjar disease. Eur J Pediatr 165:306–319. doi: 10.1007/s00431-005-0055-2 PubMedCrossRefGoogle Scholar
  83. Strauss KA, Wardley B, Robinson D et al (2010) Classical maple syrup urine disease and brain development: principles of management and formula design. Mol Genet Metab 99:333–345. doi: 10.1016/j.ymgme.2009.12.007 PubMedCentralPubMedCrossRefGoogle Scholar
  84. Strom SC, Fisher RA, Rubinstein WS, Barranger JA, Towbin RB, Charron M, Mieles L, Pisarov LA, Dorko K, Thompson MT, Reyes J (1997) Transplantation of human hepatocytes. Transplantation Proc 29:2103–2106CrossRefGoogle Scholar
  85. Van Maldergem L, Moser AB, Vincent M-F et al (2005) Orthotopic liver transplantation from a living-related donor in an infant with a peroxisome biogenesis defect of the infantile Refsum disease type. J Inherit Metab Dis 28:593–600. doi: 10.1007/s10545-005-0593-9 PubMedCrossRefGoogle Scholar
  86. Wan Z, Zhang X-G, Liu Z-W, Lv Y (2013) Therapeutic liver repopulation for metabolic liver diseases: advances from bench to bedside. Hepatol Res 43:122–130. doi: 10.1111/j.1872-034X.2012.01081.x PubMedCrossRefGoogle Scholar
  87. Watanabe Y (1980) Serial inbreeding of rabbits with hereditary hyperlipidemia (WHHL-rabbit). Atherosclerosis 36:261–268PubMedCrossRefGoogle Scholar
  88. Weiss KH, Gotthardt D, Schmidt J et al (2007) Liver transplantation for metabolic liver diseases in adults: indications and outcome. Nephrol Dial Transplant 22:viii9–viii12. doi: 10.1093/ndt/gfm658 PubMedCrossRefGoogle Scholar
  89. Yoshida Y, Tokusashi Y, Lee GH, Ogawa K (1996) Intrahepatic transplantation of normal hepatocytes prevents Wilson’s disease in Long-Evans cinnamon rats. Gastroenterology 111:1654–1660PubMedCrossRefGoogle Scholar
  90. Yu Y, Fisher JE, Lillegard JB et al (2012) Cell therapies for liver diseases. Liver Transpl 18:9–21. doi: 10.1002/lt.22467 PubMedCentralPubMedCrossRefGoogle Scholar
  91. Zhang KY, Tung BY, Kowdley KV (2007) Liver transplantation for metabolic liver diseases. Clin Liver Dis 11:265–281. doi: 10.1016/j.cld.2007.04.002 PubMedCrossRefGoogle Scholar
  92. Zhou H, Dong X, Kabarriti R et al (2012) Single liver lobe repopulation with wildtype hepatocytes using regional hepatic irradiation cures jaundice in Gunn rats. PLoS ONE 7:e46775. doi: 10.1371/journal.pone.0046775 PubMedCentralPubMedCrossRefGoogle Scholar
  93. Zinnanti WJ, Lazovic J (2012) Interrupting the mechanisms of brain injury in a model of maple syrup urine disease encephalopathy. J Inherit Metab Dis 35:71–79. doi: 10.1007/s10545-011-9333-5 PubMedCrossRefGoogle Scholar
  94. Zinnanti WJ, Lazovic J, Griffin K et al (2009) Dual mechanism of brain injury and novel treatment strategy in maple syrup urine disease. Brain 132:903–918. doi: 10.1093/brain/awp024 PubMedCentralPubMedCrossRefGoogle Scholar
  95. Zolotov D, Wagner S, Kalb K et al (2012) Long-term strategies for the treatment of Refsum’s disease using therapeutic apheresis. J Clin Apher 27:99–105. doi: 10.1002/jca.21200 PubMedCrossRefGoogle Scholar

Copyright information

© SSIEM and Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Kara R. Vogel
    • 1
  • Andrew A. Kennedy
    • 2
  • Luke A. Whitehouse
    • 2
  • K. Michael Gibson
    • 1
  1. 1.Section of Clinical Pharmacology, College of PharmacyWashington State UniversitySpokaneUSA
  2. 2.Department of Biological SciencesMichigan Technological UniversityHoughtonUSA

Personalised recommendations