Advertisement

Journal of Inherited Metabolic Disease

, Volume 37, Issue 1, pp 53–62 | Cite as

Characterization of CoQ10 biosynthesis in fibroblasts of patients with primary and secondary CoQ10 deficiency

  • Nuria Buján
  • Angela Arias
  • Raquel Montero
  • Judit García-Villoria
  • Willy Lissens
  • Sara Seneca
  • Carmen Espinós
  • Plácido Navas
  • Linda De Meirleir
  • Rafael Artuch
  • Paz Briones
  • Antonia Ribes
Original Article

Abstract

Primary coenzyme Q10 (CoQ10) deficiencies are associated with mutations in genes encoding enzymes important for its biosynthesis and patients are responsive to CoQ10 supplementation. Early treatment allows better prognosis of the disease and therefore, early diagnosis is desirable. The complex phenotype and genotype and the frequent secondary CoQ10 deficiencies make it difficult to achieve a definitive diagnosis by direct quantification of CoQ10. We developed a non-radioactive methodology for the quantification of CoQ10 biosynthesis in fibroblasts that allows the identification of primary deficiencies. Fibroblasts were incubated 72 h with 28 μmol/L 2H3-mevalonate or 1.65 mmol/L 13C6-p-hydroxybenzoate. The newly synthesized 2H3- and 13C6- labelled CoQ10 were analysed by high performance liquid chromatography-tandem mass spectrometry. The mean and the reference range for 13C6-CoQ10 and 2H3-CoQ10 biosynthesis were 0.97 (0.83–1.1) and 0.13 (0.09–0.17) nmol/Unit of citrate synthase, respectively. We validated the methodology through the study of one patient with COQ2 mutations and six patients with CoQ10 deficiency secondary to other inborn errors of metabolism. Afterwards we investigated 16 patients’ fibroblasts and nine showed decreased CoQ10 biosynthesis. Therefore, the next step is to study the COQ genes in order to reach a definitive diagnosis in these nine patients. In the patients with normal rates the deficiency is probably secondary. In conclusion, we have developed a non-invasive non-radioactive method suitable for the detection of defects in CoQ10 biosynthesis, which offers a good tool for the stratification of patients with these treatable mitochondrial diseases.

Keywords

CoQ10 Mevalonate Neuronal Ceroid Lipofuscinosis Respiratory Chain Activity CoQ10 Deficiency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We acknowledge the technical support of Carlota Ogg, Sonia Moliner, Patricia Alcala and Cristina Fernandez. Nuria Buján is a PhD student of the University of Girona. The Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER) is an initiative of the Instituto de Salud Carlos III (Ministerio de Ciencia e Innovación, Spain). This research was supported in part by grants PI08/0307, PI08/0663, and PI11/02350, PI12/01138 from Fondo de Investigación Sanitaria.

Conflict of interest

None.

References

  1. Aeby A, Sznajer Y, Cavé H, Rebuffat E, Van Coster R, Rigal O, Van Bogaert P (2007) Cardiofaciocutaneous (CFC) syndrome associated with muscular coenzyme Q10 deficiency. J Inherit Metab Dis 30:827PubMedCrossRefGoogle Scholar
  2. Arias A, García-Villoria J, Rojo A, Buján N, Briones P, Ribes A (2012) Analysis of coenzyme Q10 in lymphocytes by HPLC–MS/MS. J Chromatogr B Anal Technol Biomed Life Sci 908:23–26CrossRefGoogle Scholar
  3. Artuch R, Brea-Calvo G, Briones P et al (2006) Cerebellar ataxia with coenzyme Q10 deficiency: diagnosis and follow-up after coenzyme Q10 supplementation. J Neurol Sci 246:153–158PubMedCrossRefGoogle Scholar
  4. Crane FL, Hatefli Y, Lester RL, Widmer C (1957) Isolation of a quinone from beef heart mitochondria. Biochim Biophys Acta 25:220–221PubMedCrossRefGoogle Scholar
  5. Dallner G, Sindelar PJ (2000) Regulation of ubiquinone metabolism. Free Radic Biol Med 29:285–294PubMedCrossRefGoogle Scholar
  6. Diomedi-Camassei F, Di Giandomenico S, Santorelli FM et al (2007) COQ2 nephropathy: a newly described inherited mitochondriopathy with primary renal involvement. J Am Soc Nephrol 18:2773–2780PubMedCrossRefGoogle Scholar
  7. Festenstein GN, Heaton FW, Loewe JS, Morton RA (1955) A constituent of the unsaponifiable portion of animal tissue lipids (λmax 272mμ). Biochem J 59:558–566PubMedGoogle Scholar
  8. Frerman FE (1987) Reaction of electron transfer flavoprotein ubiquinone oxidoreductase with the respiration chain. Biochim Biophys Acta 893:161–169PubMedCrossRefGoogle Scholar
  9. Frerman FE, Goodman SI (2001) Defects of electron transfer flavoprotein and electron transfer flavoprotein-ubiquinone oxidoreductase: glutaric academia type II. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic and molecular bases of inherited disease. McGraw-Hill, New York, pp 2357–2365Google Scholar
  10. Gempel K, Topaloglu H, Talim B et al (2007) The myopathic form of coenzyme Q10 deficiency is caused by mutations in the electron-transferring-flavoprotein dehydrogenase (ETFDH) gene. Brain 130:2037–2044PubMedCrossRefGoogle Scholar
  11. Horvath R, Schneiderat P, Schoser BG et al (2006) Coenzyme Q10 deficiency and isolated myopathy. Neurology 66:253–255PubMedCrossRefGoogle Scholar
  12. Laforêt P, Acquaviva-Bourdain C, Rigal O et al (2009) Diagnostic assessment and long-term follow-up of 13 patients with Very Long-Chain Acyl-Coenzyme A dehydrogenase (VLCAD) deficiency. Neuromuscul Disord 19:324–329PubMedCrossRefGoogle Scholar
  13. Liang WC, Ohkuma A, Hayashi YK et al (2009) ETFDH mutations, CoQ10 levels, and respiratory chain activities in patients with riboflavin-responsive multiple acyl-CoA dehydrogenase deficiency. Neuromuscul Disord 19:212–216PubMedCrossRefGoogle Scholar
  14. López LC, Quinzii CM, Area E, Naini A, Rahman S, Schuelke M, Salviati L, DiMauro S, Hirano M (2010) Treatment of CoQ10 deficient fibroblasts with ubiquinone, CoQ analogs, and vitamin C: time- and compound-dependent effects. PLoS One 5:e11897PubMedCentralPubMedCrossRefGoogle Scholar
  15. Macías-Vidal J, Rodríguez-Pascau L, Sánchez-Ollé G et al (2011) Molecular analysis of 30 Niemann-Pick type C patients from Spain. Clin Genet 80:39–49PubMedCrossRefGoogle Scholar
  16. Matsuoka T, Maeda H, Goto Y, Nonaka I (1991) Muscle coenzyme Q10 in mitochondrial encephalomyopathies. Neuromuscul Disord 1:443–447PubMedCrossRefGoogle Scholar
  17. Montero R, Sánchez-Alcázar JA, Briones P et al (2008) Analysis of coenzyme Q10 in muscle and fibroblasts for the diagnosis of CoQ10 deficiency syndromes. Clin Biochem 41:697–700PubMedCrossRefGoogle Scholar
  18. Montero R, Sánchez-Alcázar JA, Briones P et al (2009) Coenzyme Q10 deficiency associated with a mitochondrial DNA depletion syndrome: a case report. Clin Biochem 42:742–745PubMedCrossRefGoogle Scholar
  19. Ogasahara S, Engel AG, Frens D, Mack D (1989) Muscle coenzyme Q deficiency in familial mitochondrial encephalomyopathy. Proc Natl Acad Sci U S A 86:2379–2382PubMedCentralPubMedCrossRefGoogle Scholar
  20. Pineda M, Montero R, Aracil A et al (2010) Coenzyme Q(10)-responsive ataxia: 2-year-treatment follow-up. Mov Disord 25:1262–1268PubMedCrossRefGoogle Scholar
  21. Quinzii CM, Kattah AG, Naini A et al (2005) Coenzyme Q deficiency and cerebellar ataxia associated with an aprataxin mutation. Neurology 64:539–541PubMedCrossRefGoogle Scholar
  22. Quinzii C, Naini A, Salviati L et al (2006) A mutation in para-hydroxybenzoate-polyprenyl transferase (COQ2) causes primary coenzyme Q10 deficiency. Am J Hum Genet 78:345–349PubMedCentralPubMedCrossRefGoogle Scholar
  23. Quinzii CM, DiMauro S, Hirano M (2007) Human coenzyme Q10 deficiency. Neurochem Res 32:723–727PubMedCentralPubMedCrossRefGoogle Scholar
  24. Rahman S, Clarke CF, Hirano M (2012) 176th ENMC International Workshop: diagnosis and treatment of coenzyme Q10 deficiency. Neuromuscul Disord 22:76–86PubMedCentralPubMedCrossRefGoogle Scholar
  25. Rötig A, Appelkvist EL, Geromel V et al (2000) Quinone-responsive multiple respiratory-chain dysfunction due to widespread coenzyme Q10 deficiency. Lancet 356:391–395PubMedCrossRefGoogle Scholar
  26. Rustin P, Munnich A, Rötig A (2004) Mitochondrial respiratory chain dysfunction caused by coenzyme Q deficiency. Methods Enzymol 382:81–88PubMedGoogle Scholar
  27. Sacconi S, Trevisson E, Salviati L et al (2010) Coenzyme Q10 is frequently reduced in muscle of patients with mitochondrial myopathy. Neuromuscul Disord 20:44–48PubMedCrossRefGoogle Scholar
  28. Salviati L, Sacconi S, Murer L et al (2005) Infantile encephalomyopathy and nephropathy with CoQ10 deficiency: a CoQ10-responsive condition. Neurology 65:606–608PubMedCrossRefGoogle Scholar
  29. Salviati L, Trevisson E, Rodriguez Hernandez MA, Casarin A, Pertegato V, Doimo M, Cassina M, Agosto C, Desbats MA, Sartori G, Sacconi S, Memo L, Zuffardi O, Artuch R, Quinzii C, DiMauro S, Hirano M, Santos-Ocaña C, Navas P (2012) Haploinsufficiency of COQ4 causes coenzyme Q10 deficiency. J Med Genet 49:187–191PubMedCrossRefGoogle Scholar
  30. Schedin S, Pentchev P, Dallner G (1998) Reduced cholesterol accumulation and improved deficient peroxisomal functions in a murine model of Niemann-Pick type C disease upon treatment with peroxisomal proliferators. Biochem Pharmacol 56:1195–1199PubMedCrossRefGoogle Scholar
  31. Srere PA (1969) Citrate synthase. Methods Enzymol 13:3–11Google Scholar
  32. Tekle M, Turunen M, Dallner G, Chojnacki T, Swiezewska E (2008) Investigation of coenzyme Q biosynthesis in human fibroblast and HepG2 cells. J Biochem Biophys Methods 70:909–917PubMedCrossRefGoogle Scholar
  33. Turunen M, Olsson J, Dallner G (2004) Metabolism and function of coenzyme Q. Biochim Biophys Acta 1660:171–199PubMedCrossRefGoogle Scholar

Copyright information

© SSIEM and Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Nuria Buján
    • 1
  • Angela Arias
    • 1
  • Raquel Montero
    • 2
  • Judit García-Villoria
    • 1
  • Willy Lissens
    • 3
  • Sara Seneca
    • 3
  • Carmen Espinós
    • 4
  • Plácido Navas
    • 5
  • Linda De Meirleir
    • 3
  • Rafael Artuch
    • 2
  • Paz Briones
    • 6
  • Antonia Ribes
    • 1
  1. 1.Secció d’Errors Congènits del Metabolisme-IBC, Servei de Bioquímica i Genètica MolecularHospital Clínic, CIBERERBarcelonaSpain
  2. 2.Servei de BioquímicaHospital Sant Joan de Déu, CIBERERBarcelonaSpain
  3. 3.UZ BrusselVrije UniversiteitBrusselBelgium
  4. 4.Instituto de Biomedicina de ValenciaCSIC, CIBERERValenciaSpain
  5. 5.Universidad Pablo de Olavide-CSIC, CIBERERSevillaSpain
  6. 6.Secció d’Errors Congènits del Metabolisme-IBC, Servei de Bioquímica i Genètica MolecularHospital Clínic, CIBERER, CSICBarcelonaSpain

Personalised recommendations