Journal of Inherited Metabolic Disease

, Volume 36, Issue 5, pp 779–786 | Cite as

The male reproductive system in classic galactosemia: cryptorchidism and low semen volume

  • Cynthia S. Gubbels
  • Corrine K. Welt
  • John C. M. Dumoulin
  • Simon G. F. Robben
  • Catherine M. Gordon
  • Gerard A. J. Dunselman
  • M. Estela Rubio-Gozalbo
  • Gerard T. Berry
Original Article


Previous studies examining reproductive parameters in men with galactosemia have inconsistently demonstrated abnormalities. We hypothesized that men with galactosemia may demonstrate evidence of reproductive dysfunction. Pubertal history, physical examination, hormone levels and semen analyses were examined in 26 males with galactosemia and compared to those in 46 controls. The prevalence of cryptorchidism was higher in men with galactosemia than in the general population [11.6 % vs. 1.0 % (95%CI: 0.75–1.26; p < 0.001)]. Testosterone (461 ± 125 vs. 532 ± 133 ng%; p = 0.04), inhibin B (144 ± 66 vs. 183 ± 52 pg/mL; p = 0.002) and sperm concentration (46 ± 36 vs. 112 ± 75 × 106 spermatozoa/mL; p = 0.01) were lower and SHBG was higher (40.7 ± 21.5 vs 26.7 ± 14.6; p = 0.002) in men with galactosemia compared to controls. Semen volume was below normal in seven out of 12 men with galactosemia. Men with galactosemia have a higher than expected prevalence of cryptorchidism and low semen volumes. The subtle decrease in testosterone and inhibin B levels and sperm count may indicate mild defects in Sertoli and Leydig cell function, but does not point towards severe infertility causing reproductive impairment. Follow-up studies are needed to further determine the clinical consequences of these abnormalities.


Luteinizing Hormone Inhibin Pubertal Development Sperm Concentration Cryptorchidism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We would like to thank Dr. Harvey Levy and Dr. Louis J. Elsas for their assistance with the physical examinations.

Details of funding

These studies were supported by the Dutch Galactosemia Association (GVN), Parents of Galactosemic Children Association (PGCA) and the Clinical Translational Study Unit (CTSU) at Children’s Hospital Boston. The authors confirm independence from the sponsors; the content of the article has not been influenced by the sponsor

Conflict of interest


Supplementary material

10545_2012_9539_MOESM1_ESM.doc (50 kb)
ESM 1 (DOC 50 kb)


  1. Berkowitz GS, Lapinski RH, Dolgin SE, Gazella JG, Bodian CA, Holzman IR (1993) Prevalence and natural history of cryptorchidism. Pediatrics 92(1):44–49PubMedGoogle Scholar
  2. Berry GT (1995) The role of polyols in the pathophysiology of hypergalactosemia. Eur J Pediatr 154(7 suppl 2):S53–S64CrossRefPubMedGoogle Scholar
  3. Bhat M, Haase C, Lee PJ (2005) Social outcome in treated individuals with inherited metabolic disorders: Uk study. J Inherit Metab Dis 28(6):825–830CrossRefPubMedGoogle Scholar
  4. Boepple PA, Hayes FJ, Dwyer AA, Raivio T, Lee H, Crowley WF Jr, Pitteloud N (2008) Relative roles of inhibin b and sex steroids in the negative feedback regulation of follicle-stimulating hormone in men across the full spectrum of seminiferous epithelium function. J Clin Endocrinol Metab 93(5):1809–1814CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bosch AM, Grootenhuis MA, Bakker HD, Heijmans HS, Wijburg FA, Last BF (2004) Living with classical galactosemia: health-related quality of life consequences. Pediatrics 113(5):e423–e428CrossRefPubMedGoogle Scholar
  6. Charlwood J, Clayton P, Keir G, Mian N, Winchester B (1998) Defective galactosylation of serum transferrin in galactosemia. Glycobiology 8(4):351–357CrossRefPubMedGoogle Scholar
  7. Chavarro JE, Toth TL, Sadio SM, Hauser R (2008) Soy food and isoflavone intake in relation to semen quality parameters among men from an infertility clinic. Hum Reprod 23(11):2584–2590CrossRefPubMedPubMedCentralGoogle Scholar
  8. Deeb A, Mason C, Lee YS, Hughes IA (2005) Correlation between genotype, phenotype and sex of rearing in 111 patients with partial androgen insensitivity syndrome. Clin Endocrinol (Oxf) 63(1):56–62CrossRefGoogle Scholar
  9. Frenette G, Thabet M, Sullivan R (2006) Polyol pathway in human epididymis and semen. J Androl 27(2):233–239CrossRefPubMedGoogle Scholar
  10. Gubbels CS, Land JA, Rubio-Gozalbo ME (2008) Fertility and impact of pregnancies on the mother and child in classic galactosemia. Obstet Gynecol Surv 63(5):334–343CrossRefPubMedGoogle Scholar
  11. Gubbels CS, Maurice-Stam H, Berry GT, Bosch AM, Waisbren S, Rubio-Gozalbo ME (2011) Psychosocial developmental milestones in men with classic galactosemia. J Inherit Metab Dis 34(2):415–419CrossRefPubMedPubMedCentralGoogle Scholar
  12. Hers HG (1956) Le mécanisme de la transformation de glucose en fructose par les vésicules séminales. Biochim Biophys Acta 22(1):202–203CrossRefPubMedGoogle Scholar
  13. Hsu SY (2003) New insights into the evolution of the relaxin-lgr signaling system. Trends Endocrinol Metab 14(7):303–309CrossRefPubMedGoogle Scholar
  14. Hughes IA, Acerini CL (2008) Factors controlling testis descent. Eur J Endocrinol 159(Suppl 1):S75–S82CrossRefPubMedGoogle Scholar
  15. Irons M, Levy HL, Crowley W (1986) Gonadal function in galactosemia. Am J Hum Genet 39:A13Google Scholar
  16. Kaufman FR, Kogut MD, Donnell GN, Goebelsmann U, March C, Koch R (1981) Hypergonadotropic hypogonadism in female patients with galactosemia. N Engl J Med 304(17):994–998CrossRefPubMedGoogle Scholar
  17. Kaufman FR, Donnell GN, Roe TF, Kogut MD (1986) Gonadal function in patients with galactosaemia. J Inherit Metab Dis 9(2):140–146CrossRefPubMedGoogle Scholar
  18. Li Y, Ptolemy AS et al (2010) Quantification of galactose-1-phosphate uridyltransferase enzyme activity by liquid chromatography-tandem mass spectrometry. Clin Chem 56(5):772–780CrossRefPubMedPubMedCentralGoogle Scholar
  19. Lindhout M, Rubio-Gozalbo ME et al (2010) Direct non-radioactive assay of galactose-1-phosphate:uridyltransferase activity using high performance liquid chromatography. Clin Chim Acta; International Journal of Clinical Chemistry 411(13-14):980–983CrossRefPubMedGoogle Scholar
  20. Mann T, Mann CL (1981) Male reproductive function and semen: themes and trends in physiology, biochemistry and investigative andrology. New York, Springer-VerlagCrossRefGoogle Scholar
  21. McNeilly AS (2012) Diagnostic applications for inhibins and activins. Mol Cell Endocrinol 359(1–2):121–125CrossRefPubMedGoogle Scholar
  22. Messina M (2010) Soybean isoflavone exposure does not have feminizing effects on men: a critical examination of the clinical evidence. Fertil Steril 93(7):2095–2104CrossRefPubMedGoogle Scholar
  23. Panis B, Bakker JA, Sels JP, Spaapen LJ, van Loon LJ, Rubio-Gozalbo ME (2006) Untreated classical galactosemia patient with mild phenotype. Mol Genet Metab 89(3):277–279CrossRefPubMedGoogle Scholar
  24. Rubio-Gozalbo ME, Panis B, Zimmermann LJI, Spaapen LJ, Menheere PPCA (2006) The endocrine system in treated patients with classical galactosemia. Mol Genet Metab 89(4):316–322CrossRefPubMedGoogle Scholar
  25. Schweitzer S, Shin Y, Jakobs C, Brodehl J (1993) Long-term outcome in 134 patients with galactosaemia. Eur J Pediatr 152(1):36–43CrossRefPubMedGoogle Scholar
  26. Steinmann B, Gitzelmann R, Zachmann M (1981a) Galactosemia: hypergonadotropic hypogonadism already found in prepubertal girls but only in adult males. Eur J Pediatr 135:337Google Scholar
  27. Steinmann B, Gitzelmann R, Zachmann M (1981b) Hypogonadism and galactosemia. N Engl J Med 305(8):464–465CrossRefGoogle Scholar
  28. Tanner JM, Whitehouse RH (1976) Clinical longitudinal standards for height, weight, height velocity, weight velocity, and stages of puberty. Arch Dis Child 51(3):170–179CrossRefPubMedPubMedCentralGoogle Scholar
  29. Waggoner DD, Buist NR, Donnell GN (1990) Long-term prognosis in galactosaemia: results of a survey of 350 cases. J Inherit Metab Dis 13(6):802–818CrossRefPubMedGoogle Scholar
  30. WHO (1999) WHO laboratory manual for the examination of human semen and sperm-cervical mucus interaction, 4th edn. Cambridge University Press, Cambridge, UKGoogle Scholar
  31. Yan Y, Scott DJ, Wilkinson TN, Ji J, Tregear GW, Bathgate RA (2008) Identification of the n-linked glycosylation sites of the human relaxin receptor and effect of glycosylation on receptor function. Biochemistry 47(26):6953–6968CrossRefPubMedGoogle Scholar

Copyright information

© SSIEM and Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Cynthia S. Gubbels
    • 1
  • Corrine K. Welt
    • 2
  • John C. M. Dumoulin
    • 3
  • Simon G. F. Robben
    • 4
  • Catherine M. Gordon
    • 5
    • 6
  • Gerard A. J. Dunselman
    • 7
  • M. Estela Rubio-Gozalbo
    • 8
  • Gerard T. Berry
    • 9
  1. 1.Department of Clinical GeneticsMaastricht University Medical CenterMaastrichtThe Netherlands
  2. 2.Reproductive Endocrine Unit, Massachusetts General HospitalHarvard Medical SchoolBostonUSA
  3. 3.Department of Obstetrics and Gynaecology and Center for Reproductive MedicineMaastricht University Medical CenterMaastrichtThe Netherlands
  4. 4.Department of RadiologyMaastricht University Medical CenterMaastrichtThe Netherlands
  5. 5.Divisions of Endocrinology and Adolescent MedicineHasbro Children’s Hospital and Brown UniversityProvidenceUSA
  6. 6.Children’s Hospital Boston and Harvard Medical SchoolBostonUSA
  7. 7.GROW: School for Oncology and Developmental Biology and Department of Obstetrics and GynaecologyMaastricht University Medical CenterMaastrichtThe Netherlands
  8. 8.Department of Pediatrics and Laboratory Genetic Metabolic DiseaseMaastricht University Medical CenterMaastrichtThe Netherlands
  9. 9.The Manton Center for Orphan Disease Research, Division of Genetics, Children’s Hospital BostonHarvard Medical SchoolBostonUSA

Personalised recommendations