Advertisement

Cell microencapsulation: a potential tool for the treatment of neuronopathic lysosomal storage diseases

  • Ursula Matte
  • Valeska Lizzi Lagranha
  • Talita Giacomet de Carvalho
  • Fabiana Quoos Mayer
  • Roberto Giugliani
Review

Abstract

Lysosomal storage disorders (LSD) are monogenic diseases caused by the deficiency of different lysosomal enzymes that degrade complex substrates such as glycosaminoglycans, sphingolipids, and others. As a consequence there is multisystemic storage of these substrates. Most treatments for these disorders are based in the fact that most of these enzymes are soluble and can be internalized by adjacent cells via mannose-6-phosphate receptor. In that sense, these disorders are good candidates to be treated by somatic gene therapy based on cell microencapsulation. Here, we review the existing data about this approach focused on the LSD treatments, the advantages and limitations faced by these studies.

Keywords

Enzyme Replacement Therapy Fabry Disease Lysosomal Storage Disorder Metachromatic Leukodystrophy Agalsidase Beta 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

TGC is the recipient of a CAPES scholarship; VLL and FQM are recipients of CNPq scholarships, UM and RG are recipient of CNPq PQ scholarships. This work was supported by FIPE-HCPA.

References

  1. Barsoum SC, Milgram W, Mackay W et al. (2003) Delivery of recombinant gene product to canine brain with the use of microencapsulation. J Lab Clin Med 142(6):399–413PubMedCrossRefGoogle Scholar
  2. Barton NW, Brady RO, Dambrosia JM et al. (1991) Replacement therapy for inherited enzyme deficiency–macrophage-targeted glucocerebrosidase for Gaucher's disease. N Engl J Med 324(21):1464–1470PubMedCrossRefGoogle Scholar
  3. Baruch L, Benny O, Gilert A, Ukobnik M, Ben Itzhak O, Machluf M (2009) Alginate-PLL cell encapsulation system Co-entrapping PLGA-microspheres for the continuous release of anti-inflammatory drugs. Biomed Microdevices 11:1103–1113Google Scholar
  4. Beck M (2010) Therapy for Lysosomal Storage Disorders. IUBMB Life 62(1):33–40PubMedGoogle Scholar
  5. Blasi P, Giovagnoli S, Schoubben A, Ricci M, Rossi C, Luca G, Basta G, Calafiore R (2006) Preparation and in vitro and in vivo characterization of composite microcapsules for cell encapsulation. Int J Pharm. 31;324(1):27–36.Google Scholar
  6. Bloch J, Bachoud-Lévi AC, Déglon N et al. (2004) Neuroprotective gene therapy for Huntington's disease, using polymer-encapsulated cells engineered to secrete human ciliary neurotrophic factor: results of a phase I study. Hum Gene Ther 15(10):968–975PubMedCrossRefGoogle Scholar
  7. Boelens JJ, Prasad VK, Tolar J, Wynn RF, Peters C (2010) Current international perspectives on hematopoietic stem cell transplantation for inherited metabolic disorders. Pediatr Clin N Am 57(1):123–145CrossRefGoogle Scholar
  8. Bressel T, Paz AH, Baldo G, Lima EOC, Matte U, Saraiva-Pereira M (2008) An effective device for generating alginate microcapsules. Genet Mol Biol 31:1CrossRefGoogle Scholar
  9. Burton BK, Guffon N, Roberts J, van der Ploeg AT, Jones SA (2010) Home treatment with intravenous enzyme replacement therapy with idursulfase for mucopolysaccharidosis type II - data from the Hunter Outcome Survey. Mol Genet Metab 101(2–3):123–129PubMedCrossRefGoogle Scholar
  10. Chang TM (1964) Semipermeable microcapsules. Science 146:524–525PubMedCrossRefGoogle Scholar
  11. Chang PL (1999) Encapsulation for somatic gene therapy. Ann N Y Acad Sci 18:(875):146–158. Mater ResGoogle Scholar
  12. Chang PL, Van Raamsdonk JM, Hortelano G, Barsoum SC, MacDonald NC, Stockley TL (1999) The in vivo delivery of heterologous proteins by microencapsulated recombinant cells. Trends Biotechnol 17(2):78–83PubMedCrossRefGoogle Scholar
  13. Clarke LA, Wraith JE, Beck M et al. (2009) Long-term efficacy and safety of laronidase in the treatment of mucopolysaccharidosis I. Pediatrics 123:229–240PubMedCrossRefGoogle Scholar
  14. Consiglio A, Martino S, Dolcetta D et al. (2007) Metabolic correction in oligodendrocytes derived from metachromatic leukodystrophy mouse model by using encapsulated recombinant myoblasts. J Neurol Sci 255(1–2):7–16PubMedCrossRefGoogle Scholar
  15. Cotugno G, Tessitore A, Capalbo A et al. (2010) Different serum enzyme levels are required to rescue the various systemic features of the mucopolysaccharidoses. Hum Gene Ther 21(5):555–569PubMedCrossRefGoogle Scholar
  16. Déglon N, Heyd B, Tan SA, Joseph JM, Zurn AD, Aebischer P (1996) Central nervous system delivery of recombinant ciliary neurotrophic factor by polymer encapsulated differentiated C2C12 myoblasts. Hum Gene Ther 7(17):2135–2146PubMedCrossRefGoogle Scholar
  17. Filoni C, Caciotti A, Carraresi L et al. (2010) Functional studies of new GLA gene mutations leading to conformational Fabry disease. Biochim Biophys Acta 1802(2):247–252PubMedGoogle Scholar
  18. Friso A, Tomanin R, Alba S et al. (2005) Reduction of GAG storage in MPS II mouse model following implantation of encapsulated recombinant myoblasts. J Gene Med 7(11):1482–1491PubMedCrossRefGoogle Scholar
  19. Gan Q, Wang T (2007) Chitosan nanoparticle as protein delivery carrier-systematic examination of fabrication conditions for efficient loading and release. Colloids Surf B Biointerfaces 59(1):24–34PubMedCrossRefGoogle Scholar
  20. Grandoso L, Ponce S, Manuel I et al. (2007) Long-term survival of encapsulated GDNF secreting cells implanted within the striatum of parkinsonized rats. Int J Pharm 343(1–2):69–78PubMedCrossRefGoogle Scholar
  21. Griffon DJ, Sedighi MR, Sendemir-Urkmez A, Stewart AA, Jamison R (2005) Evaluation of vacuum and dynamic cell seeding of polyglycolic acid and chitosan scaffolds for cartilage engineering. Am J Vet Res 66(4):599–605PubMedCrossRefGoogle Scholar
  22. Harmatz P, Whitley CB, Waber L et al. (2004) Enzyme replacement therapy in mucopolysaccharidosis VI (Maroteaux-Lamy syndrome). J Pediatr 144(5):574–580PubMedCrossRefGoogle Scholar
  23. Heese BA (2008) Current strategies in the management of lysosomal storage Diseases. Semin Pediatr Neurol 15:119–126PubMedCrossRefGoogle Scholar
  24. Hobbs JR (1981) Bone marrow transplantation for inborn errors. Lancet 2(8249):735–739PubMedCrossRefGoogle Scholar
  25. Hoffman D, Breakefield XO, Short MP, Aebischer P (1993) Transplantation of a polymer-encapsulated cell line genetically engineered to release NGF. Exp Neurol 122(1):100–106PubMedCrossRefGoogle Scholar
  26. Jardim LB, Aesse F, Vedolin LM et al. (2006) White matter lesions in Fabry disease before and after enzyme replacement therapy: a 2-year follow-up. Arq Neuropsiquiatr 64(3B):711–717PubMedCrossRefGoogle Scholar
  27. Jung SC, Park ES, Choi EN, Kim CH, Kim SJ, Jin DK (2010) Characterization of a novel mucopolysaccharidosis type II mouse model and recombinant AAV2/8 vector-mediated gene therapy. Mol Cells 30(1):13–18PubMedCrossRefGoogle Scholar
  28. Kakkis ED, Muenzer J, Tiller GE et al. (2001) Enzyme-replacement therapy in mucopolysaccharidosis I. N Engl J Med 344(3):182–188PubMedCrossRefGoogle Scholar
  29. Kishima H, Poyot T, Bloch J et al. (2004) Encapsulated GDNF-producing C2C12 cells for Parkinson's disease: a pre-clinical study in chronic MPTP-treated baboons. Neurobiol Dis 16(2):428–439PubMedCrossRefGoogle Scholar
  30. Kuijlen JM, de Haan BJ, Helfrich W, de Boer JF, Samplonius D, Mooij JJ, de Vos P (2006) The efficacy of alginate encapsulated CHO-K1 single chain-TRAIL producer cells in the treatment of brain tumors. J Neurooncol 78(1):31–39PubMedCrossRefGoogle Scholar
  31. Lagranha VL, Baldo G, de Carvalho TG et al. (2008) In vitro correction of ARSA deficiency in human skin fibroblasts from metachromatic leukodystrophy patients after treatment with microencapsulated recombinant cells. Metab Brain Dis 23(4):469–484PubMedCrossRefGoogle Scholar
  32. Lin HY, Huang CH, Yu HC et al. (2010) Enzyme assay and clinical assessment in subjects with a Chinese hotspot late-onset Fabry mutation (IVS4 + 919G– > A). J Inherit Metab Dis 33(5):619–624PubMedCrossRefGoogle Scholar
  33. Lowry RB, Renwick DH (1971) Relative frequency of the Hurler and Hunter syndromes. N Engl J Med 28;284(4):221–2.Google Scholar
  34. Mabe-Santana P (2006) La enfermedad de Krabbe y la leucodistrofia metacromática. In: Sanjurjo P, Baldellou A (eds.) Diagnóstico y tratamiento de las enfermedades metabólicas hereditárias: Ergon, 639–650Google Scholar
  35. Marcus J, Honigbaum S, Shroff S, Honke K, Rosenbluth J, Dupree JL (2006) Sulfatide is essencial for the maintenance of CNS myelin and axon struture. Glia 53:372–381PubMedCrossRefGoogle Scholar
  36. Martin RA (2007) Mucopolysaccharidosis Type II. In: Pagon RA, Bird TC, Dolan CR, Stephens K (eds.) GeneReviews [Internet]. Seattle (WA): University of Washington, SeattleGoogle Scholar
  37. Martins AM, Dualibi AP, Norato D et al. (2009) Guidelines for the management of mucopolysaccharidosis type I. J Pediatr 155(4 Suppl):S32–S46PubMedGoogle Scholar
  38. Matzner U, Herbst E, Hedayati KK et al. (2005) Enzyme replacement improves nervous system pathology and function in a mouse model for metachromatic leukodystrophy. Hum Mol Genet 14:1139–1152PubMedCrossRefGoogle Scholar
  39. Mayer FQ, Baldo G, de Carvalho TG, Lagranha VL, Giugliani R, Matte U (2010) Effects of cryopreservation and hypothermic storage on cell viability and enzyme activity in recombinant encapsulated cells overexpressing alpha-L-iduronidase. Artif Organs 34(5):434–439PubMedCrossRefGoogle Scholar
  40. Maysinger D, Berezovskaya O, Fedoroff S (1996) The hematopoietic cytokine colony stimulating factor 1 is also a growth factor in the CNS: (II). Microencapsulated CSF-1 and LM-10 cells as delivery systems. Exp Neurol 141(1):47–56PubMedCrossRefGoogle Scholar
  41. Mazumder MA, Burke NA, Shen F, Potter MA, Stöver HD (2009) Core-cross-linked alginate microcapsules for cell encapsulation. Biomacromolecules 8(10(6)):1365–1373CrossRefGoogle Scholar
  42. Muenzer J, Wraith JE, Beck M et al. (2006) A phase II/III clinical study of enzyme replacement therapy with idursulfase in mucopolysaccharidosis II (Hunter syndrome). Genet Med 8(8):465–473PubMedCrossRefGoogle Scholar
  43. Murua A, Orive G, Hernandez RM, Pedraz JL (2010) EPO delivery by genetically engineered C2C12 myoblasts immobilized in microcapsules. Adv Exp Med Biol 670:54–67PubMedCrossRefGoogle Scholar
  44. Naganawa Y, Ohsugi K, Kase R, Date I, Sakuraba H, Sakuragawa N (2002) In vitro study of encapsulation therapy for Fabry disease using genetically engineered CHO cell line. Cell Transplant 11(4):325–329PubMedGoogle Scholar
  45. Nakama H, Ohsugi K, Otsuki T et al. (2006) Encapsulation cell therapy for mucopolysaccharidosis type VII using genetically engineered immortalized human amniotic epithelial cells. Tohoku J Exp Med 209(1):23–32PubMedCrossRefGoogle Scholar
  46. National MPS Society, viewed August 14 2010, http://www.mpssociety.org
  47. Neufeld EF, Muenzer J (2001) The mucopolysaccharidoses. In: Scriver C, Beaudet A, Sly W et al. (eds) The metabolic and molecular bases of inherited disease. McGraw Hill, New York, pp 3421–3452Google Scholar
  48. Orive G, Ponce S, Hernandez RM, Gascon AR, Igartua M, Pedraz JL (2002) Biocompatibility of microcapsules for cell imobilization alaborated with different type of alginates. Biomaterials 23(18):3825–3831PubMedCrossRefGoogle Scholar
  49. Orive G, Gascon RA, Hernandez RM, Igartua M, Pedraz JL (2003) Cell microencapsulation technology for biomedical purposes: novel insights and challenges. Trends Pharmacol Sci 24(5):207–210PubMedCrossRefGoogle Scholar
  50. Orive G, Tam SK, Pedraz JL, Hallé JP (2006) Biocompatibility of alginate-poly-L-lysine microcapsules for cell therapy. Biomaterials 27(20):3691–3700PubMedCrossRefGoogle Scholar
  51. Parkinson-Lawrence EJ, Shandala T, Prodoehl M, Plew R, Borlace GN, Brooks DA (2010) Lysosomal storage disease: revealing lysosomal function and physiology. Physyology 25:102–115CrossRefGoogle Scholar
  52. Peirone M, Ross CJ, Hortelano G, Brash JL, Chang PL (1998) Encapsulation of various recombinant mammalian cell types in different alginate microcapsules. J Biomed Mater Res 15(42(4)):587–96CrossRefGoogle Scholar
  53. Richard M, Arfi A, Seguin J, Gandolphe C, Scherman D (2009) Widespread biochemical correction of murine mucopolysaccharidosis type VII pathology by liver hydrodynamic plasmid delivery. Gene Ther 16(6):746–756PubMedCrossRefGoogle Scholar
  54. Ross CJ, Bastedo L, Maier SA, Sands MS, Chang PL (2000a) Treatment of a lysosomal storage disease, mucopolysaccharidosis VII, with microencapsulated recombinant cells. Hum Gene Ther 11(15):2117–2127PubMedCrossRefGoogle Scholar
  55. Ross CJ, Ralph M, Chang PL (2000b) Somatic gene therapy for a neurodegenerative disease using microencapsulated recombinant cells. Exp Neurol 166(2):276–286PubMedCrossRefGoogle Scholar
  56. Schiffmann R, Kopp JB, Austin HA et al. (2001) Enzyme replacement therapy in Fabry disease: a randomized controlled trial. JAMA 285(21):2743–2749PubMedCrossRefGoogle Scholar
  57. Shull RM, Kakkis ED, McEntee MF, Kania SA, Jonas AJ, Neufeld EF (1994) Enzyme replacement in a canine model of Hurler syndrome. Proc Natl Acad Sci USA 91(26):12937–12941PubMedCrossRefGoogle Scholar
  58. Shull RM, Lu X, McEntee MF, Bright RM, Pepper KA, Kohn DB (1996) Myoblast gene therapy in canine mucopolysaccharidosis. I: abrogation by an immune response to alpha-L-iduronidase. Hum Gene Ther 7(13):1595–1603PubMedCrossRefGoogle Scholar
  59. Sifuentes M, Doroshow R, Hoft R et al. (2007) A follow-up study of MPS I patients treated with laronidase enzyme replacement therapy for 6 years. Mol Genet Metab 90:171–180PubMedCrossRefGoogle Scholar
  60. Sirrs S, Clarke JT, Bichet DG et al. (2010) Baseline characteristics of patients enrolled in the Canadian Fabry Disease Initiative. Mol Genet Metab 99(4):367–373PubMedCrossRefGoogle Scholar
  61. Sly WS, Fischer HD, Gonzalez-Noriega A, Grubb JH, Natowicz M (1981) Role of the 6-phosphomannosyl-enzyme receptor in intracellular transport and adsorptive pinocytosis of lysosomal enzymes. Meth Cell Biol 23:191–214CrossRefGoogle Scholar
  62. Spuch C, Antequera D, Portero A et al. (2010) The effect of encapsulated VEGF-secreting cells on brain amyloid load and behavioral impairment in a mouse model of Alzheimer's disease. Biomaterials 31(21):5608–5618PubMedCrossRefGoogle Scholar
  63. Stein C, Gieselmann V, Kreysing J et al. (1989) Cloning and expression of human arylsulfatase A. J Biol Chem 264:1252–1259PubMedGoogle Scholar
  64. Tomanin R, Friso A, Alba S et al. (2002) M. Non-viral transfer approaches for the gene therapy of mucopolysaccharidosis type II (Hunter syndrome). Acta Paediatr Suppl 91(439):100–104PubMedCrossRefGoogle Scholar
  65. Tylki-Szymanska A, Marucha J, Jurecka A, Syczewska M, Czartoryska M (2010) Efficacy of recombinant human α-L-iduronidase (laronidase) on restricted range of motion of upper extremities in mucopolysaccharidosis type I patients. J Inherit Metab Dis 33:151–157PubMedCrossRefGoogle Scholar
  66. Uludag H, Vos P, Tresco P (2000) Technology of mammalian cell encapsulation. Advac Drug Deliv Rev 42:29–64CrossRefGoogle Scholar
  67. Van den Hout JM, Reuser AJ, de Klerk JB, Arts WF, Smeitink JA, Van der Ploeg AT (2001) Enzyme therapy for pompe disease with recombinant human alpha-glucosidase from rabbit milk. J Inherit Metab Dis 24(2):266–274PubMedCrossRefGoogle Scholar
  68. Vitner EB, Platt FM, Futerman AH (2010) Common and uncommon pathogenic cascades in lysosomal storage diseases. J Biol Chem 285(27):20423–20427PubMedCrossRefGoogle Scholar
  69. Walkley SU (2009) Pathogenic cascades in lysosomal disease-Why so complex? J Inherit Metab Dis 32(2):181–189PubMedCrossRefGoogle Scholar
  70. Wraith JE (1995) The mucopolysaccharidoses: a clinical review and guide to management. Arch Dis Child 72:263–267PubMedCrossRefGoogle Scholar

Copyright information

© SSIEM and Springer 2011

Authors and Affiliations

  • Ursula Matte
    • 1
    • 2
    • 3
  • Valeska Lizzi Lagranha
    • 1
    • 2
  • Talita Giacomet de Carvalho
    • 1
    • 2
  • Fabiana Quoos Mayer
    • 1
    • 2
  • Roberto Giugliani
    • 1
    • 2
    • 3
    • 4
    • 5
  1. 1.Gene Therapy Center, Experimental Research CenterHospital de ClínicasPorto AlegreBrazil
  2. 2.Post-Graduation Program on Genetics and Molecular Biology, UFRGSPorto AlegreBrazil
  3. 3.Post-Graduation Program on Child and Adolescent Health, UFRGSPorto AlegreBrazil
  4. 4.Medical Genetics Service, Hospital de Clínicas, and Department of Genetics, UFRGSPorto AlegreBrazil
  5. 5.Gene Therapy CenterHospital de Clínicas de Porto AlegrePorto AlegreBrazil

Personalised recommendations