Journal of Inherited Metabolic Disease

, Volume 34, Issue 2, pp 523–528 | Cite as

Analysis of synaptic proteins in the cerebrospinal fluid as a new tool in the study of inborn errors of neurotransmission

  • Sofia T. Duarte
  • Carlos Ortez
  • Ana Pérez
  • Rafael Artuch
  • Angels García-Cazorla
Original Article


In a few rare diseases, specialised studies in cerebrospinal fluid (CSF) are required to identify the underlying metabolic disorder. We aimed to explore the possibility of detecting key synaptic proteins in the CSF, in particular dopaminergic and gabaergic, as new procedures that could be useful for both pathophysiological and diagnostic purposes in investigation of inherited disorders of neurotransmission. Dopamine receptor type 2 (D2R), dopamine transporter (DAT) and vesicular monoamine transporter type 2 (VMAT2) were analysed in CSF samples from 30 healthy controls (11 days to 17 years) by western blot analysis. Because VMAT2 was the only protein with intracellular localisation, and in order to compare results, GABA vesicular transporter, which is another intracellular protein, was also studied. Spearman’s correlation and Student’s t tests were applied to compare optical density signals between different proteins. All these synaptic proteins could be easily detected and quantified in the CSF. DAT, D2R and GABA VT expression decrease with age, particularly in the first months of life, reflecting the expected intense synaptic activity and neuronal circuitry formation. A statistically significant relationship was found between D2R and DAT expression, reinforcing the previous evidence of DAT regulation by D2R. To our knowledge, there are no previous studies on human CSF reporting a reliable analysis of these proteins. These kinds of studies could help elucidate new causes of disturbed dopaminergic and gabaergic transmission as well as understanding different responses to L-dopa in inherited disorders affecting dopamine metabolism. Moreover, this approach to synaptic activity in vivo can be extended to different groups of proteins and diseases.


Biogenic Amine Bacterial Meningitis Procalcitonin Synaptic Protein Secondary Deficiency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We greatly appreciate the technical assistance of Nuria Valmanzo and Belén Ramos (Mental Health laboratory, Fundació Sant Joan de Déu, Barcelona). Statistical studies were done with the collaboration of Raquel Iniesta (Fundació Sant Joan de Déu, Barcelona). CIBERER is an initiative of the ISCIII (MICINN, Spain). This study was funded by the grant FIS PS09/01132. C.O. is supported by a grant from Caja Navarra.


  1. Biou D, Benoist JF, Nguyen-Thi Xuan Huong C, Morel P, Marchand M (2000) Cerebrospinal fluid protein concentrations in children: age-related values in patients without disorders of the central nervous system. Clin Chem 2000 46(3):399–403Google Scholar
  2. Bolan EA, Kivell B, Jaligam V et al (2007) D2 receptors regulate dopamine transporter function via an extracellular signal-regulated kinases 1 and 2-dependent and phosphoinositide 3 kinase-independent mechanism. Mol Pharmacol 71(5):1222–1232PubMedCrossRefGoogle Scholar
  3. Cartier EA, Parra LA, Baust TB et al (2010) A biochemical and functional protein complex involving dopamine synthesis and transport into synaptic vesicles. J Biol Chem 285(3):1957–1966PubMedCrossRefGoogle Scholar
  4. Corradini I, Verderio C, Sala M et al (2009) SNAP-25 in neuropsychiatric disorders. Ann NY Acad Sci 1152:93–99PubMedCrossRefGoogle Scholar
  5. De Mei C, Ramos M, Iitaka C et al (2009) Getting specialized: presynaptic and postsynaptic dopamine D2 receptors. Curr Opin Pharmacol 9(1):53–58PubMedCrossRefGoogle Scholar
  6. Egaña LA, Cuevas RA, Baust TB et al (2009) Physical and functional interaction between the dopamine transporter and the synaptic vesicle protein synaptogyrin-3. J Neurosci 29(14):4592–4604PubMedCrossRefGoogle Scholar
  7. Eriksen J, Jørgensen TN, Gether U (2010) Regulation of dopamine transporter function by protein-protein interactions: new discoveries and methodological challenges. J Neurochem 113(1):27–41PubMedCrossRefGoogle Scholar
  8. García-Cazorla A, Serrano M, Pérez-Dueñas B et al (2007) Secondary abnormalities of neurotransmitters in infants with neurological disorders. Dev Med Child Neurol 49:740–744PubMedCrossRefGoogle Scholar
  9. García-Cazorla A, Duarte S, Serrano M (2008) Mitochondrial diseases mimicking neurotransmitter defects. Mitochondrion 8(3):273–278PubMedCrossRefGoogle Scholar
  10. García-Cazorla A, Wolf NI, Hoffmann GF (2010) Neurological disease. In: Hoffmann GF et al (eds) Inherited metabolic diseases: a clinical approach. Springer, Berlin, pp 127–159CrossRefGoogle Scholar
  11. Glickstein SB, Schmauss C (2001) Dopamine receptor functions: lessons from knockout mice [corrected]. Pharmacol Ther 91(1):63–83PubMedCrossRefGoogle Scholar
  12. Harrington MG, Fonteh AN, Oborina E et al (2009) The morphology and biochemistry of nanostructures provide evidence for synthesis and signaling functions in human cerebrospinal fluid. Cerebrospinal Fluid Res 6:10PubMedCrossRefGoogle Scholar
  13. Kauer JA, Malenka RC (2007) Synaptic plasticity and addiction. Nat Rev Neurosci 8(11):844–858PubMedCrossRefGoogle Scholar
  14. Marín-Valencia I, Serrano M, Ormazabal A et al (2008) Biochemical diagnosis of dopaminergic disturbances in paediatric patients: analysis of cerebrospinal fluid homovanillic acid and other biogenic amines. Clin Biochem 41(16–17):1306–1315PubMedCrossRefGoogle Scholar
  15. Ormazabal A, García-Cazorla A, Fernández Y et al (2005) HPLC with electrochemical and fluorescence detection procedures for the diagnosis of inborn errors of biogenic amines and pterins. J Neurosci Methods 142(1):153–158PubMedCrossRefGoogle Scholar
  16. Rustom A, Saffrich R, Markovic I et al (2004) Nanotubular highways for intercellular organelle transport. Science 303(5660):1007–1010PubMedCrossRefGoogle Scholar
  17. Serrano M, Pérez-Dueñas B, Ormazábal A et al (2008) Levodopa therapy in a Lesch-Nyhan disease patient: pathological, biochemical, neuroimaging, and therapeutic remarks. Mov Disord 23(9):1297–1300PubMedCrossRefGoogle Scholar
  18. Sorra KE, Mishra A, Kirov SA, Harris KM (2006) Dense core vesicles resemble active-zone transport vesicles and are diminished following synaptogenesis in mature hippocampal slices. Neuroscience 141(4):2097–2106PubMedCrossRefGoogle Scholar
  19. Südhof TC (2008) Neuroligins and neurexins link synaptic function to cognitive disease. Nature 455(7215):903–911PubMedCrossRefGoogle Scholar
  20. Südhof TC, Malenka RC (2008) Understanding synapses: past, present, and future. Neuron 60(3):469–476PubMedCrossRefGoogle Scholar
  21. Thouvenot E, Urbach S, Dantec C et al (2008) Enhanced detection of CNS cell secretome in plasma protein-depleted cerebrospinal fluid. J Proteome Res 7(10):4409–4421PubMedCrossRefGoogle Scholar
  22. Van Der Heyden JC, Rotteveel JJ, Wevers RA (2003) Eur J Paediatr Neurol 7(1):31–37CrossRefGoogle Scholar
  23. Volz TJ, Hanson GR, Fleckenstein AE (2006) Kinetic analysis of developmental changes in vesicular monoamine transporter-2 function. Synapse 60(6):474–477PubMedCrossRefGoogle Scholar
  24. Volz TJ, Farnsworth SJ, Rowley SD (2009) Age-dependent differences in dopamine transporter and vesicular monoamine transporter-2 function and their implications for methamphetamine neurotoxicity. Synapse 63(2):147–151PubMedCrossRefGoogle Scholar
  25. Willemsen MA, Verbeek MM, Kamsteeg EJ et al (2010) Tyrosine hydroxylase deficiency: a treatable disorder of brain catecholamine biosynthesis. Brain 133(6):1810–1822PubMedCrossRefGoogle Scholar
  26. Witzmann FA, Arnold RJ, Bai F et al (2005) A proteomic survey of rat cerebral cortical synaptosomes. Proteomics 5(8):2177–2201PubMedCrossRefGoogle Scholar
  27. Zougman A, Pilch B, Podtelejnikov A et al (2008) Integrated analysis of the cerebrospinal fluid peptidome and proteome. J Proteome Res 7(1):386–399PubMedCrossRefGoogle Scholar

Copyright information

© SSIEM and Springer 2010

Authors and Affiliations

  • Sofia T. Duarte
    • 1
    • 2
  • Carlos Ortez
    • 1
  • Ana Pérez
    • 1
  • Rafael Artuch
    • 3
  • Angels García-Cazorla
    • 1
    • 4
  1. 1.Department of Neurology, Hospital Sant Joan de Déu, Barcelona, and CIBER-ER (Biomedical Network Research Centre on Rare DiseasesInstituto de Salud Carlos IIIMadridSpain
  2. 2.Neuropaediatric Department, Hospital D. Estefânia, CHLC, EPE and CEDOCFaculdade de Ciências Médicas da Universidade Nova de LisboaLisboaPortugal
  3. 3.Department of Biochemistry, Hospital Sant Joan de Déu, Barcelona, and CIBER-ER (Biomedical Network Research Centre on Rare DiseasesInstituto de Salud Carlos IIIMadridSpain
  4. 4.Neurology DepartmentHospital Sant Joan de DeuEspluguesSpain

Personalised recommendations