Skip to main content
Log in

Analysis of synaptic proteins in the cerebrospinal fluid as a new tool in the study of inborn errors of neurotransmission

  • Original Article
  • Published:
Journal of Inherited Metabolic Disease

Abstract

In a few rare diseases, specialised studies in cerebrospinal fluid (CSF) are required to identify the underlying metabolic disorder. We aimed to explore the possibility of detecting key synaptic proteins in the CSF, in particular dopaminergic and gabaergic, as new procedures that could be useful for both pathophysiological and diagnostic purposes in investigation of inherited disorders of neurotransmission. Dopamine receptor type 2 (D2R), dopamine transporter (DAT) and vesicular monoamine transporter type 2 (VMAT2) were analysed in CSF samples from 30 healthy controls (11 days to 17 years) by western blot analysis. Because VMAT2 was the only protein with intracellular localisation, and in order to compare results, GABA vesicular transporter, which is another intracellular protein, was also studied. Spearman’s correlation and Student’s t tests were applied to compare optical density signals between different proteins. All these synaptic proteins could be easily detected and quantified in the CSF. DAT, D2R and GABA VT expression decrease with age, particularly in the first months of life, reflecting the expected intense synaptic activity and neuronal circuitry formation. A statistically significant relationship was found between D2R and DAT expression, reinforcing the previous evidence of DAT regulation by D2R. To our knowledge, there are no previous studies on human CSF reporting a reliable analysis of these proteins. These kinds of studies could help elucidate new causes of disturbed dopaminergic and gabaergic transmission as well as understanding different responses to L-dopa in inherited disorders affecting dopamine metabolism. Moreover, this approach to synaptic activity in vivo can be extended to different groups of proteins and diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Biou D, Benoist JF, Nguyen-Thi Xuan Huong C, Morel P, Marchand M (2000) Cerebrospinal fluid protein concentrations in children: age-related values in patients without disorders of the central nervous system. Clin Chem 2000 46(3):399–403

    CAS  Google Scholar 

  • Bolan EA, Kivell B, Jaligam V et al (2007) D2 receptors regulate dopamine transporter function via an extracellular signal-regulated kinases 1 and 2-dependent and phosphoinositide 3 kinase-independent mechanism. Mol Pharmacol 71(5):1222–1232

    Article  PubMed  CAS  Google Scholar 

  • Cartier EA, Parra LA, Baust TB et al (2010) A biochemical and functional protein complex involving dopamine synthesis and transport into synaptic vesicles. J Biol Chem 285(3):1957–1966

    Article  PubMed  CAS  Google Scholar 

  • Corradini I, Verderio C, Sala M et al (2009) SNAP-25 in neuropsychiatric disorders. Ann NY Acad Sci 1152:93–99

    Article  PubMed  CAS  Google Scholar 

  • De Mei C, Ramos M, Iitaka C et al (2009) Getting specialized: presynaptic and postsynaptic dopamine D2 receptors. Curr Opin Pharmacol 9(1):53–58

    Article  PubMed  Google Scholar 

  • Egaña LA, Cuevas RA, Baust TB et al (2009) Physical and functional interaction between the dopamine transporter and the synaptic vesicle protein synaptogyrin-3. J Neurosci 29(14):4592–4604

    Article  PubMed  Google Scholar 

  • Eriksen J, Jørgensen TN, Gether U (2010) Regulation of dopamine transporter function by protein-protein interactions: new discoveries and methodological challenges. J Neurochem 113(1):27–41

    Article  PubMed  CAS  Google Scholar 

  • García-Cazorla A, Serrano M, Pérez-Dueñas B et al (2007) Secondary abnormalities of neurotransmitters in infants with neurological disorders. Dev Med Child Neurol 49:740–744

    Article  PubMed  Google Scholar 

  • García-Cazorla A, Duarte S, Serrano M (2008) Mitochondrial diseases mimicking neurotransmitter defects. Mitochondrion 8(3):273–278

    Article  PubMed  Google Scholar 

  • García-Cazorla A, Wolf NI, Hoffmann GF (2010) Neurological disease. In: Hoffmann GF et al (eds) Inherited metabolic diseases: a clinical approach. Springer, Berlin, pp 127–159

    Chapter  Google Scholar 

  • Glickstein SB, Schmauss C (2001) Dopamine receptor functions: lessons from knockout mice [corrected]. Pharmacol Ther 91(1):63–83

    Article  PubMed  CAS  Google Scholar 

  • Harrington MG, Fonteh AN, Oborina E et al (2009) The morphology and biochemistry of nanostructures provide evidence for synthesis and signaling functions in human cerebrospinal fluid. Cerebrospinal Fluid Res 6:10

    Article  PubMed  Google Scholar 

  • Kauer JA, Malenka RC (2007) Synaptic plasticity and addiction. Nat Rev Neurosci 8(11):844–858

    Article  PubMed  CAS  Google Scholar 

  • Marín-Valencia I, Serrano M, Ormazabal A et al (2008) Biochemical diagnosis of dopaminergic disturbances in paediatric patients: analysis of cerebrospinal fluid homovanillic acid and other biogenic amines. Clin Biochem 41(16–17):1306–1315

    Article  PubMed  Google Scholar 

  • Ormazabal A, García-Cazorla A, Fernández Y et al (2005) HPLC with electrochemical and fluorescence detection procedures for the diagnosis of inborn errors of biogenic amines and pterins. J Neurosci Methods 142(1):153–158

    Article  PubMed  CAS  Google Scholar 

  • Rustom A, Saffrich R, Markovic I et al (2004) Nanotubular highways for intercellular organelle transport. Science 303(5660):1007–1010

    Article  PubMed  CAS  Google Scholar 

  • Serrano M, Pérez-Dueñas B, Ormazábal A et al (2008) Levodopa therapy in a Lesch-Nyhan disease patient: pathological, biochemical, neuroimaging, and therapeutic remarks. Mov Disord 23(9):1297–1300

    Article  PubMed  Google Scholar 

  • Sorra KE, Mishra A, Kirov SA, Harris KM (2006) Dense core vesicles resemble active-zone transport vesicles and are diminished following synaptogenesis in mature hippocampal slices. Neuroscience 141(4):2097–2106

    Article  PubMed  CAS  Google Scholar 

  • Südhof TC (2008) Neuroligins and neurexins link synaptic function to cognitive disease. Nature 455(7215):903–911

    Article  PubMed  Google Scholar 

  • Südhof TC, Malenka RC (2008) Understanding synapses: past, present, and future. Neuron 60(3):469–476

    Article  PubMed  Google Scholar 

  • Thouvenot E, Urbach S, Dantec C et al (2008) Enhanced detection of CNS cell secretome in plasma protein-depleted cerebrospinal fluid. J Proteome Res 7(10):4409–4421

    Article  PubMed  CAS  Google Scholar 

  • Van Der Heyden JC, Rotteveel JJ, Wevers RA (2003) Eur J Paediatr Neurol 7(1):31–37

    Article  Google Scholar 

  • Volz TJ, Hanson GR, Fleckenstein AE (2006) Kinetic analysis of developmental changes in vesicular monoamine transporter-2 function. Synapse 60(6):474–477

    Article  PubMed  CAS  Google Scholar 

  • Volz TJ, Farnsworth SJ, Rowley SD (2009) Age-dependent differences in dopamine transporter and vesicular monoamine transporter-2 function and their implications for methamphetamine neurotoxicity. Synapse 63(2):147–151

    Article  PubMed  CAS  Google Scholar 

  • Willemsen MA, Verbeek MM, Kamsteeg EJ et al (2010) Tyrosine hydroxylase deficiency: a treatable disorder of brain catecholamine biosynthesis. Brain 133(6):1810–1822

    Article  PubMed  Google Scholar 

  • Witzmann FA, Arnold RJ, Bai F et al (2005) A proteomic survey of rat cerebral cortical synaptosomes. Proteomics 5(8):2177–2201

    Article  PubMed  CAS  Google Scholar 

  • Zougman A, Pilch B, Podtelejnikov A et al (2008) Integrated analysis of the cerebrospinal fluid peptidome and proteome. J Proteome Res 7(1):386–399

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We greatly appreciate the technical assistance of Nuria Valmanzo and Belén Ramos (Mental Health laboratory, Fundació Sant Joan de Déu, Barcelona). Statistical studies were done with the collaboration of Raquel Iniesta (Fundació Sant Joan de Déu, Barcelona). CIBERER is an initiative of the ISCIII (MICINN, Spain). This study was funded by the grant FIS PS09/01132. C.O. is supported by a grant from Caja Navarra.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angels García-Cazorla.

Additional information

Communicated by: Sedel Frederic

Competing interests: None declared.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duarte, S.T., Ortez, C., Pérez, A. et al. Analysis of synaptic proteins in the cerebrospinal fluid as a new tool in the study of inborn errors of neurotransmission. J Inherit Metab Dis 34, 523–528 (2011). https://doi.org/10.1007/s10545-010-9256-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10545-010-9256-6

Keywords

Navigation