Skip to main content
Log in

Altering the balance between healthy and mutated mitochondrial DNA

  • Mitochondrial Medicine
  • Published:
Journal of Inherited Metabolic Disease

Abstract

Pathogenic mutations of the mitochondrial genome are frequently found to co-exist with wild-type mtDNA molecules, a state known as heteroplasmy. In most disease cases, the mutation is recessive with manifestation of a clinical phenotype occurring when the proportion of mutated mtDNA exceeds a high threshold. The concept of increasing the ratio of healthy to mutated mtDNA as a means to correcting the biochemical defect has received much attention. A number of strategies are highlighted in this article, including manipulation of the mitochondrial genome by antigenomic drugs or restriction endonucleases, zinc finger peptide-targeted nucleases and exercise-induced gene shifting. The feasibility of these approaches has been demonstrated in a number of models, however more work is necessary before use in human patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

ATP:

Adenosine 5′-triphosphate

LHON:

Leber hereditary optic neuropathy

MERRF:

Myoclonic epilepsy with ragged red fibres

mtDNA:

Mitochondrial DNA

NARP:

Neurogenic muscle weakness ataxia and retinitis

OXPHOS:

Oxidative phosphorylation

PNAs:

Peptide nucleic acids

ZPFs:

Zinc finger peptides

References

  • Anderson S, Bankier AT, Barrell BG et al (1981) Sequence and organization of the human mitochondrial genome. Nature 290:457–465

    Article  PubMed  CAS  Google Scholar 

  • Bacman SR, Williams SL, Hernandez D, Moraes CT (2007) Modulating mtDNA heteroplasmy by mitochondria-targeted restriction endonucleases in a 'differential multiple cleavage-site' model. Gene Ther 14:1309–1318

    PubMed  CAS  Google Scholar 

  • Bayona-Bafaluy MP, Blits B, Battersby BJ, Shoubridge EA, Moraes CT (2005) Rapid directional shift of mitochondrial DNA heteroplasmy in animal tissues by a mitochondrially targeted restriction endonuclease. Proc Natl Acad Sci USA 102:14392–14397

    Article  PubMed  CAS  Google Scholar 

  • Chinnery PF, Taylor RW, Diekert K, Lill R, Turnbull DM, Lightowlers RN (1999) Peptide nucleic acid delivery to human mitochondria. Gene Ther 6:1919–1928

    Article  PubMed  CAS  Google Scholar 

  • Chinnery PF, Johnson MA, Wardell TM et al (2000) The epidemiology of pathogenic mitochondrial DNA mutations. Ann Neurol 48:188–193

    Article  PubMed  CAS  Google Scholar 

  • Clark KM, Bindoff LA, Lightowlers RN et al (1997) Reversal of a mitochondrial DNA defect in human skeletal muscle. Nat Genet 16:222–224

    Article  PubMed  CAS  Google Scholar 

  • Dassa EP, Dufour E, Goncalves S et al (2009) Expression of the alternative oxidase complements cytochrome c oxidase deficiency in human cells. EMBO Mol Med 1:30–36

    Article  PubMed  CAS  Google Scholar 

  • King MP, Attardi G (1988) Injection of mitochondria into human cells leads to a rapid replacement of the endogenous mitochondrial DNA. Cell 52:811–819

    Article  PubMed  CAS  Google Scholar 

  • Manfredi G, Gupta N, Vazquez-Memije ME et al (1999) Oligomycin induces a decrease in the cellular content of a pathogenic mutation in the human mitochondrial ATPase 6 gene. J Biol Chem 274:9386–9391

    Article  PubMed  CAS  Google Scholar 

  • McFarland R, Taylor RW, Turnbull DM (2007) Mitochondrial disease–its impact, etiology, and pathology. Curr Top Dev Biol 77:113–155

    Article  PubMed  CAS  Google Scholar 

  • Minczuk M, Papworth MA, Kolasinska P, Murphy MP, Klug A (2006) Sequence-specific modification of mitochondrial DNA using a chimeric zinc finger methylase. Proc Natl Acad Sci USA 103:19689–19694

    Article  PubMed  CAS  Google Scholar 

  • Minczuk M, Papworth MA, Miller JC, Murphy MP, Klug A (2008) Development of a single-chain, quasi-dimeric zinc-finger nuclease for the selective degradation of mutated human mitochondrial DNA. Nucleic Acids Res 36: 3926–38

    Google Scholar 

  • Muratovska A, Lightowlers RN, Taylor RW et al (2001) Targeting peptide nucleic acid (PNA) oligomers to mitochondria within cells by conjugation to lipophilic cations: implications for mitochondrial DNA replication, expression and disease. Nucleic Acids Res 29:1852–1863

    Article  PubMed  CAS  Google Scholar 

  • Murphy JL, Blakely EL, Schaefer AM et al (2008) Resistance training in patients with single, large-scale deletions of mitochondrial DNA. Brain 131:2832–2840

    Article  PubMed  Google Scholar 

  • Ross GF, Smith PM, McGregor A, Turnbull DM, Lightowlers RN (2003) Synthesis of trifunctional PNA-benzophenone derivatives for mitochondrial targeting, selective DNA binding, and photo-cross-linking. Bioconjug Chem 14:962–966

    Article  PubMed  CAS  Google Scholar 

  • Santra S, Gilkerson RW, Davidson M, Schon EA (2004) Ketogenic treatment reduces deleted mitochondrial DNAs in cultured human cells. Ann Neurol 56:662–669

    Article  PubMed  CAS  Google Scholar 

  • Shoubridge EA, Johns T, Karpati G (1997) Complete restoration of a wild-type mtDNA genotype in regenerating muscle fibres in a patient with a tRNA point mutation and mitochondrial encephalomyopathy. Hum Mol Genet 6:2239–2242

    Article  PubMed  CAS  Google Scholar 

  • Smith PM, Ross GF, Taylor RW, Turnbull DM, Lightowlers RN (2004) Strategies for treating disorders of the mitochondrial genome. Biochim Biophys Acta 1659:232–239

    Article  PubMed  CAS  Google Scholar 

  • Spelbrink JN, Zwart R, Van Galen MJ, Van den Bogert C (1997) Preferential amplification and phenotypic selection in a population of deleted and wild-type mitochondrial DNA in cultured cells. Curr Genet 32:115–124

    Article  PubMed  CAS  Google Scholar 

  • Srivastava S, Moraes CT (2001) Manipulating mitochondrial DNA heteroplasmy by a mitochondrially targeted restriction endonuclease. Hum Mol Genet 10:3093–3099

    Article  PubMed  CAS  Google Scholar 

  • Srivastava S, Diaz F, Iommarini L, Aure K, Lombes A, Moraes CT (2009) PGC-1alpha/beta induced expression partially compensates for respiratory chain defects in cells from patients with mitochondrial disorders. Hum Mol Genet 18:1805–1812

    Article  PubMed  CAS  Google Scholar 

  • Taivassalo T, Fu K, Johns T, Arnold D, Karpati G, Shoubridge EA (1999) Gene shifting: a novel therapy for mitochondrial myopathy. Hum Mol Genet 8:1047–1052

    Article  PubMed  CAS  Google Scholar 

  • Taivassalo T, Shoubridge EA, Chen J et al (2001) Aerobic conditioning in patients with mitochondrial myopathies: physiological, biochemical, and genetic effects. Ann Neurol 50:133–141

    Article  PubMed  CAS  Google Scholar 

  • Taivassalo T, Gardner JL, Taylor RW et al (2006a) Endurance training and detraining in mitochondrial myopathies due to single large-scale mtDNA deletions. Brain 129:3391–3401

    Article  PubMed  Google Scholar 

  • Taivassalo T, Gardner JL, Taylor RW et al (2006b) Endurance training and detraining in mitochondrial myopathies due to single large-scale mtDNA deletions. Brain 129:3391–3401

    Article  PubMed  Google Scholar 

  • Tanaka M, Borgeld HJ, Zhang J et al (2002) Gene therapy for mitochondrial disease by delivering restriction endonuclease Smal into mitochondria. J Biomed Sci 9:534–541

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul M. Smith.

Additional information

Communicated by: Jan Smeitink

Competing interests: None declared.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, P.M., Lightowlers, R.N. Altering the balance between healthy and mutated mitochondrial DNA. J Inherit Metab Dis 34, 309–313 (2011). https://doi.org/10.1007/s10545-010-9122-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10545-010-9122-6

Keywords

Navigation