Advertisement

Journal of Inherited Metabolic Disease

, Volume 32, Supplement 1, pp 175–178 | Cite as

Early-onset hyperargininaemia: A severe disorder?

  • M. Schiff
  • J.-F. Benoist
  • M. L. Cardoso
  • M. Elmaleh-Bergès
  • P. Forey
  • J. Santiago
  • H. Ogier de Baulny
Short Report

Summary

Hyperargininaemia is a rare inborn error of metabolism due to a defect in the final step of the urea cycle. Infantile onset is the most common presentation with recurrent vomiting and psychomotor delay associated with spastic paraparesis; chronic hyperammonaemia is often overlooked. Neonatal and early-onset presentations are very uncommon and their clinical course not well-described. We report on a 3-week-old hyperargininaemic girl who presented with neurological deterioration associated with liver failure and 47-day ammonia intoxication before diagnosis could be made and treatment started. Despite appropriate but delayed treatment, our patient exhibited severe psychomotor delay at age 1 year. Conclusion Early identification and management of this rare but potentially treatable affection is crucial as delayed management may result in poor neurological outcome.

Keywords

Arginase Maple Syrup Urine Disease Orotic Acid Maple Syrup Urine Disease Poor Neurological Outcome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

EAA

essential amino acids

GAA

guanidinoacetate

SGOT

serum glutamic oxaloacetic transaminase

SGPT

serum glutamic pyruvic transaminase

UCD

urea cycle disorder

Notes

Acknowledgements

We are particularly grateful to Dr Daniel Rabier, who performed arginase activity measurement in red blood cells.

References

  1. Ash DE (2004) Structure and function of arginases. J Nutr 134: 2760S–2764S.Google Scholar
  2. Braga AC, Vilarinho L, Ferreira E, et al (1997) Argininemia presenting as persistent neonatal jaundice and hepatic cirrhosis. J Pediatr Gastroenterol Nutr 24: 218–221. doi: 10.1097/00005176-199702000-00018.PubMedCrossRefGoogle Scholar
  3. Crombez EA, Cederbaum SD (2005) Hyperargininemia due to liver arginase deficiency. Mol Genet Metab 84: 243–251. doi: 10.1016/j.ymgme.2004.11.004.PubMedCrossRefGoogle Scholar
  4. De Deyn PP, Marescau B, Qureshi IA, et al (1997) Hyperargininemia: a treatable inborn error of metabolism? In: De Deyn PP, Marescau B, Qureshi IA, eds. Guanidino Compounds, vol. 2. London: J. Libbey, 53–69.Google Scholar
  5. Deignan JL, Marescau B, Livesay JC, et al (2008) Increased plasma and tissue guanidino compounds in a mouse model of hyperargininemia. Mol Genet Metab 93: 172–178. doi: 10.1016/j.ymgme.2007.09.016.PubMedCrossRefGoogle Scholar
  6. Hiramatsu M (2003) A role for guanidine compounds in the brain. Mol Cell Biochem 244: 57–62. doi: 10.1023/A:1022491419813.PubMedCrossRefGoogle Scholar
  7. Janas LM, Picciano MF (1986) Quantities of amino acids ingested by human milk-fed infants. J Pediatr 109: 802–807. doi: 10.1016/S0022-3476(86)80697-7.PubMedCrossRefGoogle Scholar
  8. Jordá A, Rubio V, Portolés M, Vilas J, García-Piño J (1986) A new case of arginase deficiency in a Spanish male. J Inherit Metab Dis 9: 393–397. doi: 10.1007/BF01800491.PubMedCrossRefGoogle Scholar
  9. Marescau B, De Deyn PP, Lowenthal A, et al (1990) Guanidino compound analysis as a complementary diagnostic parameter for hyperargininemia: follow-up of guanidino compound levels during therapy. Pediatr Res 27: 297–303. doi: 10.1203/00006450-199003000-00020.PubMedCrossRefGoogle Scholar
  10. Ogier de Baulny H, François L, Grenèche MO, et al (2003) Minimum protein requirements in infancy and childhood: insights from patients with protein-restricted diets, Genetic Expression and Nutrition, Nestlé Nutrition Workshop Series, vol. 50. Philadelphia: Lippincott Williams & Wilkins, 25–35.Google Scholar
  11. Picker JD, Puga AC, Levy HL, et al (2003) Arginase deficiency with lethal neonatal expression: evidence for the glutamine hypothesis of cerebral edema. J Pediatr 142: 349–352. doi: 10.1067/mpd.2003.97.PubMedCrossRefGoogle Scholar
  12. Scaglia F, Lee B (2006) Clinical, biochemical, and molecular spectrum of hyperargininemia due to arginase I deficiency. Am J Med Genet C Semin Med Genet 142C: 113–120. doi: 10.1002/ajmg.c.30091.PubMedCrossRefGoogle Scholar
  13. Snyderman SE, Sansaricq C, Norton PM, et al (1979) Argininemia treated from birth. J Pediatr 95: 61–63. doi: 10.1016/S0022-3476(79)80082-7.PubMedCrossRefGoogle Scholar
  14. Takanashi J, Barkovich AJ, Cheng SF et al (2003) Brain MR imaging in neonatal hyperammonemic encephalopathy resulting from proximal urea cycle disorders. AJNR 24: 1184–1187.PubMedGoogle Scholar
  15. Uchino T, Snyderman SE, Lambert M, et al (1995) Molecular basis of phenotypic variation in patients with argininemia. Hum Genet 96: 255–260. doi: 10.1007/BF00210403.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • M. Schiff
    • 1
    • 5
  • J.-F. Benoist
    • 1
  • M. L. Cardoso
    • 2
  • M. Elmaleh-Bergès
    • 1
  • P. Forey
    • 3
  • J. Santiago
    • 4
  • H. Ogier de Baulny
    • 1
  1. 1.Centre de référence Maladies MétaboliquesHôpital Robert Debré, APHPParisFrance
  2. 2.Instituto de Genética Médica Jacinto de MagalhãesPortoPortugal
  3. 3.Service de Pédiatrie, Hôpital d’EnfantsSaint-Denis de La RéunionFrance
  4. 4.Service de Pédiatrie, Centre Hospitalier de MayotteMayotteFrance
  5. 5.Service de Neuropédiatrie et Maladies MétaboliquesHôpital Robert DebréParisFrance

Personalised recommendations