Advertisement

Journal of Inherited Metabolic Disease

, Volume 31, Issue 3, pp 432–441 | Cite as

Twenty-four-month α-galactosidase A replacement therapy in Fabry disease has only minimal effects on symptoms and cardiovascular parameters

  • J. W. Koskenvuo
  • J. J. Hartiala
  • P. Nuutila
  • R. Kalliokoski
  • J. S. Viikari
  • E. Engblom
  • M. Penttinen
  • J. Knuuti
  • I. Mononen
  • I. M. Kantola
Original Article

Summary

Fabry disease is an X-linked lysosomal storage disease caused by deficiency of α-galactosidase A enzyme activity. Decreased enzyme activity leads to accumulation of glycosphingolipids in different tissues including endothelial cells and smooth-muscle cells and cardiomyocytes, and cardiovascular complications are common in the disease. Since 2001, specific enzyme replacement therapy (ERT) with α-galactosidase A has been available. It has been reported to improve clinical symptoms and quality of life. However, limited and controversial data on its efficacy to cardiac involvement have been published. Nine patients (5 male) with Fabry disease were included in an open-label prospective follow-up study of 24-month ERT. Comprehensive cardiovascular evaluation was performed by MRI, stress echocardiography and quality of life assessment. Plasma globotriaosylceramide decreased from 6.2 to 1.4 μg/ml during ERT (p<0.05). The only other measured parameters that changed significantly were resting heart rate that decreased from 79 to 67 bpm (p<0.01) and end-systolic volume that decreased by 12.4 ml (p<0.05). The other parameters consisting of quality of life, self-estimated cardiovascular condition, diastolic function, exercise capacity, ECG parameters, ejection fraction and ventricular mass did not change. ERT has only minimal effect on symptoms and cardiovascular morphology and function in Fabry disease. Therefore, effective conventional medical therapy is still of major importance in Fabry disease. Larger ERT studies are warranted, especially in women, to solve current open questions, such as the age at which ERT should be started, optimal dosage and intervals between infusions. Furthermore, longer follow-up studies are needed to assess the effects of ERT on prognosis.

Keywords

Left Ventricular Hypertrophy Exercise Capacity Left Ventricular Mass Enzyme Replacement Therapy Fabry Disease 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alfakih K, Plein S, Thiele H, Jones T, Ridgway JP, Sivananthan MU (2003) Normal human left and right ventricular dimensions for MRI as assessed by turbo gradient echo and steady-state free precession imaging sequences. J Magn Reson Imaging 17(3): 323–329.CrossRefPubMedGoogle Scholar
  2. Arstila M, Impivaara O, Mäki J (1990) New ergometric reference values for clinical exercise tests. Scand J Clin Lab Invest 50(7): 747–755.CrossRefPubMedGoogle Scholar
  3. Banikazemi M, Bultas J, Waldek S, et al (2007) Agalsidase-beta therapy for advanced Fabry disease: a randomized trial. Ann Intern Med 146(2): 77–86.PubMedGoogle Scholar
  4. Beck M, Ricci R, Widmer U, et al (2004) Fabry disease: overall effects of agalsidase alfa treatment. Eur J Clin Invest 34(12): 838–844.CrossRefPubMedGoogle Scholar
  5. Beer M, Weidemann F, Breunig F, et al (2006) Impact of enzyme replacement therapy on cardiac morphology and function and late enhancement in Fabry’s cardiomyopathy. Am J Cardiol 97(10): 1515–1518.CrossRefPubMedGoogle Scholar
  6. Bierer G, Balfe D, Wilcox WR, Mosenifar Z (2006) Improvement in serial cardiopulmonary exercise testing following enzyme replacement therapy in Fabry disease. J Inherit Metab Dis 29(4): 572–579.CrossRefPubMedGoogle Scholar
  7. Branton MH, Schiffmann R, Sabnis SG, et al (2002) Natural history of Fabry renal disease: influence of alpha-galactosidase A activity and genetic mutations on clinical course. Medicine (Baltimore) 81(2): 122–138.CrossRefGoogle Scholar
  8. Breunig F, Weidemann F, Strotmann J, Knoll A, Wanner C (2006) Clinical benefit of enzyme replacement therapy in Fabry disease. Kidney Int 69(7): 1216–1221.CrossRefPubMedGoogle Scholar
  9. Cerqueira MD, Weissman NJ, Dilsizian V, et al, American Heart Association Writing Group on Myocardial Segmentation and Registration for Cardiac Imaging (2002) Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: a statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation 105(4): 539–542.CrossRefPubMedGoogle Scholar
  10. Chen CY, Chiang BN, Macfarlane PW (1989) Normal limits of the electrocardiogram in a Chinese population. J Electrocardiol 22(1): 1–15.CrossRefPubMedGoogle Scholar
  11. Cohen GI, Pietrolungo JF, Thomas JD, Klein AL (1996) A practical guide to assessment of ventricular diastolic function using Doppler echocardiography. J Am Coll Cardiol 27(7): 1753–1760.CrossRefPubMedGoogle Scholar
  12. Desnick RJ, Blieden LC, Sharp HL, Hofschire PJ, Moller JH (1976) Cardiac valvular anomalies in Fabry disease. Clinical, morphologic, and biochemical studies. Circulation 54(5): 818–825.PubMedGoogle Scholar
  13. Dujardin KS, Enriquez-Sarano M, Schaff HV, Bailey KR, Seward JB, Tajik AJ (1999) Mortality and morbidity of aortic regurgitation in clinical practice. A long-term follow-up study. Circulation 99(14): 1851–1857.PubMedGoogle Scholar
  14. Elleder M, Bradova V, Smid F, et al (1990) Cardiocyte storage and hypertrophy as a sole manifestation of Fabry’s disease. Report on a case simulating hypertrophic non-obstructive cardiomyopathy. Virchows Arch A Pathol Anat Histopathol 417(5): 449–455.CrossRefPubMedGoogle Scholar
  15. Elliott PM, Kindler H, Shah JS, et al (2006) Coronary microvascular dysfunction in male patients with Anderson–Fabry disease and the effect of treatment with alpha galactosidase A. Heart 92(3): 357–360.CrossRefPubMedGoogle Scholar
  16. Eng CM, Guffon N, Wilcox WR, et al, International Collaborative Fabry Disease Study Group (2001) Safety and efficacy of recombinant human alpha-galactosidase A replacement therapy in Fabry’s disease. N Engl J Med 345(1): 9–16.CrossRefPubMedGoogle Scholar
  17. Goldman ME, Cantor R, Schwartz MF, Baker M, Desnick RJ (1986) Echocardiographic abnormalities and disease severity in Fabry’s disease. J Am Coll Cardiol 7(5): 1157–1161.PubMedCrossRefGoogle Scholar
  18. Grayburn PA, Appleton CP, DeMaria AN, et al, BEST Trial Echocardiographic Substudy Investigators (2005) Echocardiographic predictors of morbidity and mortality in patients with advanced heart failure: the Beta-blocker Evaluation of Survival Trial (BEST). J Am Coll Cardiol 45(7): 1064–1071.CrossRefPubMedGoogle Scholar
  19. Kalliokoski RJ, Kalliokoski KK, Sundell J, et al (2005) Impaired myocardial perfusion reserve but preserved peripheral endothelial function in patients with Fabry disease. J Inherit Metab Dis 28(4): 563–573.CrossRefPubMedGoogle Scholar
  20. Kalliokoski RJ, Kantola I, Kalliokoski KK, et al (2006) The effect of 12-month enzyme replacement therapy on myocardial perfusion in patients with Fabry disease. J Inherit Metab Dis 29(1): 112–118.CrossRefPubMedGoogle Scholar
  21. Kampmann C, Baehner FA, Whybra C, et al (2005) The right ventricle in Fabry disease. Acta Paediatr Suppl 94(447): 15,8; discussion 9–10.CrossRefPubMedGoogle Scholar
  22. Kleinert J, Dehout F, Schwarting A, et al (2006) Prevalence of uncontrolled hypertension in patients with Fabry disease. Am J Hypertens 19(8): 782–787.CrossRefPubMedGoogle Scholar
  23. Koskenvuo JW, Karra H, Lehtinen J, et al (2007) Cardiac MRI: accuracy of simultaneous measurement of left and right ventricular parameters using three different sequences. Clin Physiol Funct Imaging 27(6): 385–393.CrossRefPubMedGoogle Scholar
  24. Linhart A, Palecek T, Bultas J, et al (2000) New insights in cardiac structural changes in patients with Fabry’s disease. Am Heart J 139(6): 1101–1108.CrossRefPubMedGoogle Scholar
  25. Linthorst GE, Hollak CE, Donker-Koopman WE, Strijland A, Aerts JM (2004) Enzyme therapy for Fabry disease: neutralizing antibodies toward agalsidase alpha and beta. Kidney Int 66(4): 1589–1595.CrossRefPubMedGoogle Scholar
  26. MacDermot KD, Holmes A, Miners AH (2001) Anderson–Fabry disease: clinical manifestations and impact of disease in a cohort of 60 obligate carrier females. J Med Genet 38(11): 769–775.CrossRefPubMedGoogle Scholar
  27. McHorney CA, Ware JE Jr, Raczek AE (1993) The MOS 36-Item Short-Form Health Survey (SF-36): II. Psychometric and clinical tests of validity in measuring physical and mental health constructs. Med Care 31(3): 247–263.CrossRefPubMedGoogle Scholar
  28. Meikle PJ, Hopwood JJ, Clague AE, Carey WF (1999) Prevalence of lysosomal storage disorders. JAMA 281(3): 249–254.CrossRefPubMedGoogle Scholar
  29. Michelsen S, Knutsen KM, Stugaard M, Otterstad JE (1990) Is left ventricular mass in apparently healthy, normotensive men correlated to maximal blood pressure during exercise? Eur Heart J 11(3): 241–248.PubMedGoogle Scholar
  30. Mignani R, Panichi V, Giudicissi A, et al (2004) Enzyme replacement therapy with agalsidase beta in kidney transplant patients with Fabry disease: a pilot study. Kidney Int 65(4): 1381–1385.CrossRefPubMedGoogle Scholar
  31. Pieroni M, Chimenti C, De Cobelli F, et al (2006) Fabry’s disease cardiomyopathy: echocardiographic detection of endomyocardial glycosphingolipid compartmentalization. J Am Coll Cardiol 47(8): 1663–1671.CrossRefPubMedGoogle Scholar
  32. Pisani A, Spinelli L, Sabbatini M, et al (2005) Enzyme replacement therapy in Fabry disease patients undergoing dialysis: effects on quality of life and organ involvement. Am J Kidney Dis 46(1): 120–127.CrossRefPubMedGoogle Scholar
  33. Pochis WT, Litzow JT, King BG, Kenny D (1994) Electrophysiologic findings in Fabry’s disease with a short PR interval. Am J Cardiol 74(2): 203–204.CrossRefPubMedGoogle Scholar
  34. Ramaswami U, Wendt S, Pintos-Morell G, et al (2007) Enzyme replacement therapy with agalsidase alfa in children with Fabry disease. Acta Paediatr 96(1): 122–127.CrossRefPubMedGoogle Scholar
  35. Schafer E, Baron K, Widmer U, et al (2005) Thirty-four novel mutations of the GLA gene in 121 patients with Fabry disease. Hum Mutat 25(4): 412.CrossRefPubMedGoogle Scholar
  36. Schettini C, Bianchi M, Nieto F, Sandoya E, Senra H (1999) Ambulatory blood pressure: normality and comparison with other measurements. Hypertension Working Group. Hypertension 34(4 Pt 2): 818–825.PubMedGoogle Scholar
  37. Schiffmann R, Kopp JB, Austin HA 3rd, et al (2001) Enzyme replacement therapy in Fabry disease: a randomized controlled trial. JAMA 285(21): 2743–2749.CrossRefPubMedGoogle Scholar
  38. Schiller NB, Shah PM, Crawford M, et al (1989) Recommendations for quantitation of the left ventricle by two-dimensional echocardiography. American Society of Echocardiography Committee on Standards, Subcommittee on Quantitation of Two-Dimensional Echocardiograms. J Am Soc Echocardiogr 2(5): 358–367.PubMedGoogle Scholar
  39. Senechal M, Germain DP (2003) Fabry disease: a functional and anatomical study of cardiac manifestations in 20 hemizygous male patients. Clin Genet 63(1): 46–52.CrossRefPubMedGoogle Scholar
  40. Shah JS, Hughes DA, Sachdev B, et al (2005) Prevalence and clinical significance of cardiac arrhythmia in Anderson–Fabry disease. Am J Cardiol 96(6): 842–846.CrossRefPubMedGoogle Scholar
  41. Sheth KJ, Thomas JP Jr (1982) Electrocardiograms in Fabry’s disease. J Electrocardiol 15(2): 153–156.CrossRefPubMedGoogle Scholar
  42. Spada M, Pagliardini S, Yasuda M, et al (2006) High incidence of later-onset Fabry disease revealed by newborn screening. Am J Hum Genet 79(1): 31–40.CrossRefPubMedGoogle Scholar
  43. Spinelli L, Pisani A, Sabbatini M, et al (2004) Enzyme replacement therapy with agalsidase beta improves cardiac involvement in Fabry’s disease. Clin Genet 66(2): 158–165.CrossRefPubMedGoogle Scholar
  44. Ware JE Jr, Sherbourne CD (1992) The MOS 36-item short-form health survey (SF-36). I. Conceptual framework and item selection. Med Care 30(6): 473–483.CrossRefPubMedGoogle Scholar
  45. Vasan RS, Larson MG, Levy D (1995) Determinants of echocardiographic aortic root size. The Framingham Heart Study. Circulation 91(3): 734–740.PubMedGoogle Scholar
  46. Weidemann F, Breunig F, Beer M, et al (2003) Improvement of cardiac function during enzyme replacement therapy in patients with Fabry disease: a prospective strain rate imaging study. Circulation 108(11): 1299–1301.CrossRefPubMedGoogle Scholar
  47. von Scheidt W, Eng CM, Fitzmaurice TF, et al (1991) An atypical variant of Fabry’s disease with manifestations confined to the myocardium. N Engl J Med 324(6): 395–399.Google Scholar
  48. Zeidner KM, Desnick RJ, Ioannou YA (1999) Quantitative determination of globotriaosylceramide by immunodetection of glycolipid-bound recombinant verotoxin B subunit. Anal Biochem 267(1): 104–113.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • J. W. Koskenvuo
    • 1
    • 2
  • J. J. Hartiala
    • 1
    • 2
  • P. Nuutila
    • 2
    • 3
  • R. Kalliokoski
    • 2
  • J. S. Viikari
    • 3
  • E. Engblom
    • 3
  • M. Penttinen
    • 4
  • J. Knuuti
    • 2
  • I. Mononen
    • 5
  • I. M. Kantola
    • 3
  1. 1.Department of Clinical Physiology and Nuclear MedicineTurku University HospitalTurkuFinland
  2. 2.Turku PET CentreUniversity of TurkuTurkuFinland
  3. 3.Department of MedicineTurku University HospitalTurkuFinland
  4. 4.Department of Pediatrics, Clinical Genetics UnitTurku University HospitalTurkuFinland
  5. 5.Department of Clinical ChemistryTurku University HospitalTurkuFinland

Personalised recommendations