Advertisement

Journal of Inherited Metabolic Disease

, Volume 31, Supplement 2, pp 223–225 | Cite as

Severe neurological crisis in a patient with hereditary tyrosinaemia type I after interruption of NTBC treatment

  • J.-U. Schlump
  • C. Perot
  • K. Ketteler
  • M. Schiff
  • E. Mayatepek
  • U. Wendel
  • U. Spiekerkoetter
Short Report

Summary

Neurological crises do not occur in patients with tyrosinaemia type I treated with NTBC. We report an 8 month-old boy with severe neurological crisis after interruption of NTBC treatment including progressive ascending polyneuropathy and diaphragmatic paralysis, arterial hypertension, respiratory distress requiring mechanical ventilation who later also developed impaired liver function and tubulopathy. After re-introduction of NTBC the patient slowly regained normal neurological functions and recovered completely.

Keywords

Porphyria NTBC Diaphragmatic Paralysis Nitisinone Succinylacetone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

AFP

α-fetoprotein

FAH

fumarylacetoacetate hydroxylase

NTBC

2-(2-nitro-4-trifluoromethyl-benzoyl)-1,3-cyclohexanedione

References

  1. Chakrapani A, Holme E (2006) Disorders of tyrosine metabolism. In: Fernandes J, Saudubray J-M, van den Berghe G, Walter JH, eds. Inborn Metabolic Diseases, Diagnosis and Treatment, 4th edn. Berlin: Springer Verlag: 235–238.Google Scholar
  2. Grompe M (2001) The pathophysiology and treatment of hereditary tyrosinemia type 1. Semin Liver Dis 21: 563–571.PubMedCrossRefGoogle Scholar
  3. Hostetter MK, Levy HL, Winter HS, et al (1983) Evidence for liver disease preceding amino acid abnormalities in hereditary tyrosinemia. N Engl J Med 308: 1265–1267.PubMedCrossRefGoogle Scholar
  4. Koelink CJ, van Hasselt P, van der Ploeg A, et al (2006) Tyrosinemia type I treated by NTBC: how does AFP predict liver cancer? Mol Genet Metab 89(4): 310–315.PubMedCrossRefGoogle Scholar
  5. Lindblad B, Lindstedt S, Steen G (1974) On the enzymatic defects in hereditary tyrosinemia. Proc Natl Acad Sci U S A 74: 4641–4645.CrossRefGoogle Scholar
  6. Lindstedt S, Holme E, Lock EA, Hjalmarson O, Strandvik B (1992) Treatment of hereditary tyrosinaemia type I by inhibition of 4-hydroxyphenylpyruvate dioxygenase. Lancet 340: 813–817.PubMedCrossRefGoogle Scholar
  7. Mitchell G, Larochelle J, Lambert M, et al (1990) Neurologic crisis in hereditary tyrosinemia. N Engl J Med 322: 432–437.PubMedCrossRefGoogle Scholar
  8. Mitchell G, Grompe M, Lambert M, Tanguay R (2001) Hypertyrosinemia. In: Scriver CR, Beaudet AL, Sly WS, Valle D, eds; Childs B, Kinzler KW, Vogelstein B, assoc, eds. The Metabolic and Molecular Bases of Inherited Disease, 8th edn. New York: McGraw-Hill, 1777–1806.Google Scholar
  9. Russo P, Mitchell G, Tanguay R (2001) Tyrosinemia: a review. Pediatr Dev Pathol 4: 212–221.PubMedCrossRefGoogle Scholar
  10. Stenson PD, Ball EV, Mort M, et al (2003) Human Gene Mutation Database (HGMD): 2003 update. Hum Mutat 21: 577–581.PubMedCrossRefGoogle Scholar
  11. van Spronsen FJ, Thomasse Y, Smit GP, et al (1994) Hereditary tyrosinemia type 1: a new clinical classification with difference in prognosis on dietary treatment. Hepatology 20(5): 1187–1191.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • J.-U. Schlump
    • 1
  • C. Perot
    • 2
  • K. Ketteler
    • 1
  • M. Schiff
    • 3
  • E. Mayatepek
    • 1
  • U. Wendel
    • 1
  • U. Spiekerkoetter
    • 1
  1. 1.Department of General PediatricsUniversity Children’s HospitalDüsseldorfGermany
  2. 2.Service de Réanimation & Surveillance Continue PédiatriquesHôspital Robert DebréParisFrance
  3. 3.Service de Neurologie Pédiatrique et des Maladies MétaboliquesHôspital Robert DebréParisFrance

Personalised recommendations