Skip to main content
Log in

Clinical response to persistent, low-level β-glucuronidase expression in the murine model of mucopolysaccharidosis type VII

  • Original Article
  • Published:
Journal of Inherited Metabolic Disease

Abstract

Mucopolysaccharidosis type VII (MPS VII) is a lysosomal storage disease caused by β-glucuronidase (GUSB) deficiency. This disease exhibits a broad spectrum of clinical signs including skeletal dysplasia, retinal degeneration, cognitive deficits and hearing impairment. Sustained, high-level expression of GUSB significantly improves the clinical course of the disease in the murine model of MPS VII. Low levels of enzyme expression (1–5% of normal) can significantly reduce the biochemical and histopathological manifestations of MPS VII. However, it has not been clear from previous studies whether persistent, low levels of circulating GUSB lead to significant improvements in the clinical presentation of this disease. We generated a rAAV2 vector that mediates persistent, low-level GUSB expression in the liver. Liver and serum levels of GUSB were maintained at ∼5% and ∼2.5% of normal, respectively, while other tissue ranged from background levels to 0.9%. This level of activity significantly reduced the secondary elevations of α-galactosidase and the levels of glycosaminoglycans in multiple tissues. Interestingly, this level of GUSB was also sufficient to reduce lysosomal storage in neurons in the brain. Although there were small but statistically significant improvements in retinal function, auditory function, skeletal dysplasia, and reproduction in rAAV-treated MPS VII mice, the clinical deficits were still profound and there was no improvement in lifespan. These data suggest that circulating levels of GUSB greater than 2.5% will be required to achieve substantial clinical improvements in MPS VII.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

αGAL:

α-galactosidase

ABR:

auditory-evoked brainstem response

ERG:

electroretinogram

GAG:

glycosaminoglycan

GUSB:

β-glucuronidase

hAAT:

human α-1-antitrypsin

IU:

infectious units

LSD:

lysosomal storage disease

MPS VII:

mucopolysaccharidosis type VII

rAAV2:

recombinant adeno-associated virus serotype 2

References

  • Achord DT, Brot FE, Bell CE, Sly WS (1978) Human beta-glucuronidase: in vivo clearance and in vitro uptake by a glycoprotein recognition system on reticuloendothelial cells. Cell 15(1): 269–278.

    Article  PubMed  CAS  Google Scholar 

  • Birkenmeier EH, Davisson MT, Beamer WG, et al (1989) Murine mucopolysaccharidosis type VII Characterization of a mouse with beta-glucuronidase deficiency. J Clin Invest 83(4): 1258–1266.

    PubMed  CAS  Google Scholar 

  • Birkenmeier EH, Barker JE, Vogler CA, et al (1991) Increased lifespan and correction of metabolic defects in murine mucopolysaccharidosis type VII after syngeneic bone marrow transplantation. Blood 78: 3081–3092.

    PubMed  CAS  Google Scholar 

  • Bjornsson S (1993) Simultaneous preparation and quantitation of proteoglycans by precipitation with alcian blue. Anal Biochem 210(2): 282–291.

    Article  PubMed  CAS  Google Scholar 

  • Daly TM, Vogler C, Levy B, Haskins ME, Sands MS (1999a) Neonatal gene transfer leads to widespread correction of pathology in a murine model of lysosomal storage disease. Proc Natl Acad Sci USA 96(5): 2296–2300.

    Article  CAS  Google Scholar 

  • Daly TM, Okuyama T, Vogler C, Haskins ME, Muzyczka N, Sands MS (1999b) Neonatal intramuscular injection with recombinant adeno-associated virus results in prolonged beta-glucuronidase expression in situ and correction of liver pathology in mucopolysaccharidosis type VII mice. Hum Gene Ther 10(1): 85–94.

    Article  CAS  Google Scholar 

  • Daly TM, Ohlemiller KK, Roberts MS, Vogler CA, Sands MS (2001) Prevention of systemic clinical disease in MPS VII mice following AAV-mediated neonatal gene transfer. Gene Ther 8(17): 1291–1298.

    Article  PubMed  CAS  Google Scholar 

  • Ellinwood NM, Vite CH, Haskins ME (2004) Gene therapy for lysosomal storage diseases: the lessons and promise of animal models. J Gene Med 4: 481–506.

    Article  CAS  Google Scholar 

  • Fraites TJ Jr, et al (2002) Correction of the enzymatic and functional deficits in a model of Pompe disease using adeno-associated virus vectors. Mol Ther 5(5 Pt 1): 571–578.

    Article  PubMed  CAS  Google Scholar 

  • Gao C, Sands MS, Haskins ME, Ponder KP (2000) Delivery of a retroviral vector expressing human β-glucuronidase to the liver and spleen decreases lysosomal storage in mucopolysaccharidosis VII mice. Mol Ther 2(2): 233–244.

    Article  PubMed  CAS  Google Scholar 

  • Greaton CJ, Lane KB, Shepherd VL, McLaughlin BJ (2003) Transcription of a single mannose receptor gene by macrophage and retinal pigment epithelium. Ophthalmic Res 35(1): 42–47.

    Article  PubMed  CAS  Google Scholar 

  • Grimm D, Kern A, Rittner K, Kleinschmidt JA (1998) Novel tools for production and purification of recombinant adenoassociated virus vectors. Hum Gene Ther 9(18): 2745–2760.

    PubMed  CAS  Google Scholar 

  • Hafenrichter DG, Wu X, Rettinger SD, Kennedy SC, Flye MW, Ponder KP (1994) Quantitative evaluation of liver-specific promoters from retroviral vectors after in vivo transduction of hepatocytes. Blood 84(10): 3394–3404.

    PubMed  CAS  Google Scholar 

  • Hartung SD, Frandsen JL, Pan D, et al (2004) Correction of metabolic, craniofacial, and neurologic abnormalities in MPS I mice treated at birth with adeno-associated virus vector transducing the human alpha-l-iduronidase gene. Mol Ther 9(6): 866–875.

    Article  PubMed  CAS  Google Scholar 

  • Jin HK, Schuchman EH (2003) Ex vivo gene therapy using bone marrow-derived cells: combined effects of intracerebral and intravenous transplantation in a mouse model of Niemann—Pick disease. Mol Ther 8(6): 876–885.

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi H, Carbonaro D, Pepper K, et al (2005) Neonatal gene therapy of MPS I mice by intravenous injection of a lentiviral vector. Mol Ther 11(5): 776–789.

    Article  PubMed  CAS  Google Scholar 

  • Kornfeld S (1992) Structure and function of the mannose 6-phosphate/insulinlike growth factor II receptors. Annu Rev Biochem 61: 307–330.

    Article  PubMed  CAS  Google Scholar 

  • Kosuga M, Takahashi S, Sasaki K, et al (2000) Phenotype correction in murine mucopolysaccharidosis type VII by transplantation of human amniotic epithelial cells after adenovirus-mediated gene transfer. Cell Transplant 9(5): 687–692.

    PubMed  CAS  Google Scholar 

  • Lazarus HS, Sly WS, Kyle JW, Hageman GS (1993) Photoreceptor degeneration and altered distribution of interphotoreceptor matrix proteoglycans in the mucopolysaccharidosis VII mouse. Exp Eye Res 56(5): 531–541.

    Article  PubMed  CAS  Google Scholar 

  • Meikle PJ, Hopwood JJ, Clague AE, Carey WF (1999) Prevalence of lysosomal storage disorders. JAMA 281: 249–254.

    Article  PubMed  CAS  Google Scholar 

  • Monroy MA, Ross FP, Teitelbaum SL, Sands MS (2002) Abnormal osteoclast morphology and bone remodeling in a murine model of lysosomal storage disease. Bone 30: 352–359.

    Article  PubMed  CAS  Google Scholar 

  • Moullier P, Bohl D, Heard JM, Danos O (1993) Correction of lysosomal storage in the liver and spleen of MPS VII mice by implantation of genetically modified skin fibroblasts. Nat Genet 4(2): 154–159.

    Article  PubMed  CAS  Google Scholar 

  • Nakai H, Yant SR, Storm TA, Fuess S, Meuse L, Kay MA (2001) Extrachromosomal recombinant adeno-associated virus vector genomes are primarily responsible for stable liver transduction in vivo. J Virol 75(15): 6969–6976.

    Article  PubMed  CAS  Google Scholar 

  • Neufeld EF, Fratantoni JE (1970) Inborn errors of mucopolysaccharide metabolism. Science 169: 141–146.

    Article  PubMed  CAS  Google Scholar 

  • Neufeld EF, Muenzer J (2001) The mucopolysaccharisdoses. In: Scriver CR, Beaudet AL, Sly WS, Valle D, eds; Childs B, Kinzler KW, Vogelstein B, assoc, eds. The Metabolic and Molecular Bases of Inherited Disease, 8th edn. New York: McGraw-Hill, 3421–3452.

    Google Scholar 

  • O'Connor LH, Erway LC, Vogler CA, et al (1998) Enzyme replacement therapy for murine mucopolysaccharidosis type VII: improvements in behavior and auditory function. J Clin Invest 101: 1394–1400.

    Article  PubMed  Google Scholar 

  • Ohlemiller KK, Vogler CA, Roberts M, Galvin N, Sands MS (2000) Retinal function is improved in a murine model of lysosomal storage disease following bone marrow transplantation. Exp Eye Res 71: 469–481.

    Article  PubMed  CAS  Google Scholar 

  • Ohlemiller KK, Hennig AK, Lett JM, Heidbreder AF, Sands MS (2002) Inner ear pathology in the mucopolysaccharidosis VII mouse. Hear Res 169: 69–84.

    Article  PubMed  Google Scholar 

  • Park J, Murray GJ, Limaye A, et al (2003) Long-term correction of globotriaosylceramide storage in Fabry mice by recombinant adeno-associated virus-mediated gene transfer. Proc Natl Acad Sci USA 100(6): 3450–3454.

    Article  PubMed  CAS  Google Scholar 

  • Ponder KP, Melniczek JR, Xu L, et al (2002) Therapeutic neonatal hepatic gene therapy in mucopolysaccharidosis VII dogs. Proc Natl Acad Sci USA 99(20): 13102–13107.

    Article  PubMed  CAS  Google Scholar 

  • Sands MS, Barker JE (1999) Percutaneous intravenous injection in neonatal mice. Lab Anim Sci 49(3): 328–330.

    PubMed  CAS  Google Scholar 

  • Sands MS, Birkenmeier EH (1993) A single-base-pair deletion in the beta-glucuronidase gene accounts for the phenotype of murine mucopolysaccharidosis type VII. Proc Natl Acad Sci USA 90(14): 6567–6571.

    Article  PubMed  CAS  Google Scholar 

  • Sands MS, Davidson BL (2006) Gene therapy for lysosomal storage diseases. Mol Ther 13: 839–849.

    Article  PubMed  CAS  Google Scholar 

  • Sands MS, Barker JE, Vogler C, et al (1993) Treatment of murine mucopolysaccharidosis type VII by syngeneic bone marrow transplantation in neonates. Lab Invest 68(6): 676–686.

    PubMed  CAS  Google Scholar 

  • Sands MS, Vogler C, Kyle JW, et al (1994) Enzyme replacement therapy for murine mucopolysaccharidosis type VII. J Clin Invest 93: 2324–2331.

    PubMed  CAS  Google Scholar 

  • Sands MS, Erway LC, Vogler C, Sly WS, Birkenmeier EH (1995) Syngeneic bone marrow transplantation reduces the hearing loss associated with murine mucopolysaccharidosis type VII. Blood 86(5): 2033–2040.

    PubMed  CAS  Google Scholar 

  • Sands MS, Vogler CA, Ohlemiller KK, et al (2001) Biodistribution, kinetics, and efficacy of highly phosphorylated and non-phosphorylated beta-glucuronidase in the murine model of mucopolysaccharidosis VII. J Biol Chem 276(46): 43160–43165.

    Article  PubMed  CAS  Google Scholar 

  • Schuldt AJ, Hampton TJ, Chu V, et al (2004) Electrocardiographic and other cardiac anomalies in beta-glucuronidase-null mice corrected by nonablative neonatal marrow transplantation. Proc Natl Acad Sci USA 101(2): 603–608.

    Article  PubMed  CAS  Google Scholar 

  • Sferra TJ, Backstrom K, Wang C, Rennard R, Miller M, Hu Y (2004) Widespread correction of lysosomal storage following intrahepatic injection of a recombinant adeno-associated virus in the adult MPS VII mouse. Mol Ther 10: 478–491.

    Article  PubMed  CAS  Google Scholar 

  • Sly WS, Quinton BA, McAlister WH, Rimoin DL (1973) Beta-glucuronidase deficiency: report of clinical, radiologic, and biochemical features of a new mucopolysaccharidosis. J Pediatr 82(2): 249–257.

    Article  PubMed  CAS  Google Scholar 

  • Soper BW, Pung AW, Vogler CA, Grubb JH, Sly WS, Barker JE (1999) Enzyme replacement therapy improves reproductive performance in mucopolysaccharidosis type VII mice but does not prevent postnatal losses. Pediatr Res 45(2): 180–186.

    PubMed  CAS  Google Scholar 

  • Soper BW, Lessard MD, Vogler CA, et al (2001) Nonablative neonatal marrow transplantation attenuates functional and physical defects of β-glucuronidase deficiency. Blood 97(5): 1498–1504.

    Article  PubMed  CAS  Google Scholar 

  • Vervoort R, Gitzelmann R, Bosshard N, Maire I, Liebaers I, Lissens W (1998) Low beta-glucuronidase enzyme activity and mutations in the human beta-glucuronidase gene in mild mucopolysaccharidosis type VII, pseudodeficiency and a heterozygote. Hum Genet 102(1): 69–78.

    Article  PubMed  CAS  Google Scholar 

  • Vogler C, Sands MS, Levy B, Galvin N, Birkenmeier EH, Sly WS (1996) Enzyme replacement with recombinant beta-glucuronidase in murine mucopolysaccharidosis type VII: impact of therapy during the first six weeks of life on subsequent lysosomal storage, growth, and survival. Pediatr Res 39(6): 1050–1054.

    PubMed  CAS  Google Scholar 

  • Vogler C, Levy B, Galvin NJ, et al (1999) Enzyme replacement in murine mucopolysaccharidosis type VII: neuronal and glial response to beta-glucuronidase requires early initiation of enzyme replacement therapy. Pediatr Res 45(6): 838–844.

    PubMed  CAS  Google Scholar 

  • Vogler C, Levy B, Grubb JH, et al (2005a) Overcoming the blood—brain barrier with high-dose enzyme replacement therapy in murine mucopolysaccharidosis VII. Proc Natl Acad Sci USA 102(41): 14777–14782.

    Article  CAS  Google Scholar 

  • Vogler C, Levy B, Galvin N, Lessard M, Soper B, Barker J (2005b) Early onset of lysosomal storage disease in a murine model of mucopolysaccharidosis type VII: undegraded substrate accumulates in many tissues in the fetus and very young MPS VII mouse. Pediatr Dev Pathol 8(4): 453–462.

    Article  CAS  Google Scholar 

  • Wolfe JH, Sands MS, Barker JE, et al (1992) Reversal of pathology in murine mucopolysaccharidosis type VII by somatic cell gene transfer. Nature 360(6406): 749–753.

    Article  PubMed  CAS  Google Scholar 

  • Wolfe JH, Sands MS, Harel N, et al (2000) Gene transfer of low levels of beta-glucuronidase corrects hepatic lysosomal storage in a large animal model of mucopolysaccharidosis VII. Mol Ther 2(6): 552–561.

    Article  PubMed  CAS  Google Scholar 

  • Woloszynek JC, Roberts M, Coleman T, et al (2004) Numerous transcriptional alterations in liver persist after short-term enzyme-replacement therapy in a murine model of mucopolysaccharidosis type VII. Biochem J 379(Pt 2): 461–469.

    Article  PubMed  CAS  Google Scholar 

  • Xiao W, Berta SC, Lu MM, Moscioni AD, Tazelaar J, Wilson JM (1998) Adeno-associated virus as a vector for liver-directed gene therapy. J Virol 72(12): 10222–10226.

    PubMed  CAS  Google Scholar 

  • Xu F, Ding E, Migone F, et al (2005) Glycogen storage in multiple muscles of old GSD-II mice can be rapidly cleared after a single intravenous injection with a modified adenoviral vector expressing hGAA. J Gene Med 7(2): 171–178.

    Article  PubMed  CAS  Google Scholar 

  • Zolotukhin S, Byrne BJ, Mason E, et al (1999) Recombinant adeno-associated virus purification using novel methods improves infectious titer and yield. Gene Ther 6(6): 973–985.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Sands.

Additional information

Communicating editor: Ed Wraith

Competing interests: None declared

References to electronic databases: Mucopolysaccharidosis type VII, OMIM +253220; β-glucuronidase, EC 3.2.1.31.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Donsante, A., Levy, B., Vogler, C. et al. Clinical response to persistent, low-level β-glucuronidase expression in the murine model of mucopolysaccharidosis type VII. J Inherit Metab Dis 30, 227–238 (2007). https://doi.org/10.1007/s10545-007-0483-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10545-007-0483-4

Keywords

Navigation