Skip to main content
Log in

Protein misfolding disorders: Pathogenesis and intervention

  • SSIEM SYMPOSIUM 2005
  • Published:
Journal of Inherited Metabolic Disease

Summary

Newly synthesized proteins in the living cell must go through a folding process to attain their functional structure. To achieve this in an efficient fashion, all organisms, including humans, have evolved a large set of molecular chaperones that assist the folding as well as the maintenance of the functional structure of cellular proteins. Aberrant proteins, the result of production errors, inherited or acquired amino acid substitutions or damage, especially oxidative modifications, can in many cases not fold correctly and will be trapped in misfolded conformations. To rid the cell of misfolded proteins, the living cell contains a large number of intracellular proteases, e.g. the proteasome, which together with the chaperones comprise the cellular protein quality control systems. Many inherited disorders due to amino acid substitutions exhibit loss-of-function pathogenesis because the aberrant protein is eliminated by one of the protein quality control systems. Examples are cystic fibrosis and phenylketonuria. However, not all aberrant proteins can be eliminated and the misfolded protein may accumulate and form toxic oligomeric and/or aggregated inclusions. In this case the loss of function may be accompanied by a gain-of-function pathogenesis, which in many cases determines the pathological and clinical features. Examples are Parkinson and Huntington diseases. Although a number of strategies have been tried to decrease the amounts of accumulated and aggregated proteins, a likely future strategy seems to be the use of chemical or pharmacological chaperones with specific effects on the misfolded protein in question. Positive examples are enzyme enhancement in a number of lysosomal disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anfinsen CB (1973) Principles that govern the folding of protein chains. Science 181: 223–230.

    PubMed  CAS  Google Scholar 

  • Bence NF, Sampat RM, Kopito RR (2001) Impairment of the ubiquitin-proteasome system by protein aggregation. Science 292: 1552–1555.

    Article  PubMed  CAS  Google Scholar 

  • Bernier V, Lagace M, Bichet DG, Bouvier M (2004) Pharmacological chaperones: potential treatment for conformational diseases. Trends Endocrinol Metab 15: 222–228.

    Article  PubMed  CAS  Google Scholar 

  • Beutler E, Grabowski GA (2001) Gaucher disease. In: Scriver CR, Beaudet al, Sly WS, Valle D, Childs B, Kinzler KW, Vogelstein B, eds. The Metabolic and Molecular Bases of Inherited Disease, 8th edn. New York: McGraw-Hill, 3635–3668.

    Google Scholar 

  • Bruijn LI, Miller TM, Cleveland DW (2004) Unraveling the mechanisms involved in motor neuron degeneration in ALS. Annu Rev Neurosci 27: 723–749.

    Article  PubMed  CAS  Google Scholar 

  • Brusilow SW, Horwich AL (2001) Urea cycle enzymes. In: Scriver CR, Beaudetal, Sly WS, Valle D, eds; Childs B, Kinzler KW, Vogelstein B, assoc, eds. The Metabolic and Molecular Bases of Inherited Disease, 8th edn. New York: McGraw-Hill, 1909–1963.

    Google Scholar 

  • Bucciantini M, Calloni G, Chiti F, etal (2004) Prefibrillar amyloid protein aggregates share common features of cytotoxicity. J Biol Chem 279: 31374–31382.

    Article  PubMed  CAS  Google Scholar 

  • Burch M, Blair E (1999) The inheritance of hypertrophic cardiomyopathy. Pediatr Cardiol 20: 313–316.

    Article  PubMed  CAS  Google Scholar 

  • Burrows JA, Willis LK, Perlmutter DH (2000) Chemical chaperones mediate increased secretion of mutant alpha 1-antitrypsin (alpha 1-AT) Z: a potential pharmacological strategy for prevention of liver injury and emphysema in alpha 1-AT deficiency. Proc Natl Acad Sci USA 97: 1796–1801.

    Article  PubMed  CAS  Google Scholar 

  • Butterfield DA, Kanski J (2001) Brain protein oxidation in age-related neurodegenerative disorders that are associated with aggregated proteins. Mech Ageing Dev 122: 945–962.

    Article  PubMed  CAS  Google Scholar 

  • Calloni G, Zoffoli S, Stefani M, Dobson CM, Chiti F (2005) Investigating the effects of mutations on protein aggregation in the cell. J Biol Chem 280: 10607–10613.

    Article  PubMed  CAS  Google Scholar 

  • Carrell RW, Lomas DA (2002) Alpha1-antitrypsin deficiency—a model for conformational diseases. N Engl J Med 346: 45–53.

    Article  PubMed  CAS  Google Scholar 

  • Casari G, De Fusco M, Ciarmatori S, etal (1998) Spastic paraplegia and OXPHOS impairment caused by mutations in paraplegin, a nuclear-encoded mitochondrial metalloprotease. Cell 93: 973–983.

    Article  PubMed  CAS  Google Scholar 

  • Cashikar AG, Duennwald M, Lindquist SL (2005) A chaperone pathway in protein disaggregation. Hsp26 alters the nature of protein aggregates to facilitate reactivation by Hsp104. J Biol Chem 280: 23869–23875.

    Article  PubMed  CAS  Google Scholar 

  • Caughey B, Lansbury PT (2003) Protofibrils, pores, fibrils, and neurodegeneration: separating the responsible protein aggregates from the innocent bystanders. Annu Rev Neurosci 26: 267–298.

    Article  PubMed  CAS  Google Scholar 

  • Chiti F, Stefani M, Taddei N, Ramponi G, Dobson CM (2003) Rationalization of the effects of mutations on peptide and protein aggregation rates. Nature 424: 805–808.

    Article  PubMed  CAS  Google Scholar 

  • Christensen JH, Siggaard C, Corydon TJ, etal (2004) Impaired trafficking of mutated AVP prohormone in cells expressing rare disease genes causing autosomal dominant familial neurohypophyseal diabetes insipidus. Clin Endocrinol (Oxf) 60: 125–136.

    Article  CAS  Google Scholar 

  • Clarkson E, Costa CF, Machesky LM (2004) Congenital myopathies: diseases of the actin cytoskeleton. J Pathol 204: 407–417.

    Article  PubMed  CAS  Google Scholar 

  • Cookson MR (2005) The biochemistry of Parkinson's disease. Annu Rev Biochem 74: 29–52.

    Article  PubMed  CAS  Google Scholar 

  • Cornett J, Cao F, Wang CE, etal (2005) Polyglutamine expansion of huntingtin impairs its nuclear export. Nature Genetics 37: 198–204.

    Article  PubMed  CAS  Google Scholar 

  • Corydon MJ, Vockley J, Rinaldo P, etal (2001) Role of common gene variations in the molecular pathogenesis of short-chain acyl-CoA dehydrogenase deficiency. Pediatr Res 49: 18–23.

    PubMed  CAS  Google Scholar 

  • Costa CF, Rommelaere H, Waterschoot D, etal (2004) Myopathy mutations in alpha-skeletal-muscle actin cause a range of molecular defects. J Cell Sci 117: 3367–3377.

    Article  PubMed  CAS  Google Scholar 

  • Dalle-Donne I, Giustarini D, Colombo R, Rossi R, Milzani A (2003) Protein carbonylation in human diseases. Trends Mol Med 9: 169–176.

    Article  PubMed  CAS  Google Scholar 

  • Desnick RJ (2004) Enzyme replacement and enhancement therapies for lysosomal diseases. J Inherit Metab Dis 27: 385–410.

    Article  PubMed  CAS  Google Scholar 

  • Dukan S, Farewell A, Ballesteros M, Taddei F, Radman M, Nystrom T (2000) Protein oxidation in response to increased transcriptional or translational errors. Proc Natl Acad Sci USA 97: 5746–5749.

    Article  PubMed  CAS  Google Scholar 

  • Ellis RJ (1993) The general concept of molecular chaperones. Philos Trans R Soc Lond B Biol Sci 339: 257–261.

    PubMed  CAS  Google Scholar 

  • Ellis RJ, Pinheiro TJ (2002) Medicine: danger — misfolding proteins. Nature 416: 483–484.

    Article  PubMed  CAS  Google Scholar 

  • Emerit J, Edeas M, Bricaire F (2004) Neurodegenerative diseases and oxidative stress. Biomed Pharmacother 58: 39–46.

    Article  PubMed  CAS  Google Scholar 

  • Fan JQ (2003) A contradictory treatment for lysosomal storage disorders: inhibitors enhance mutant enzyme activity. Trends Pharmacol Sci 24: 355–360.

    Article  PubMed  CAS  Google Scholar 

  • Farinha CM, Amaral MD (2005) Most F508del-CFTR is targeted to degradation at an early folding checkpoint and independently of calnexin. Mol Cell Biol 25: 5242–5252.

    Article  PubMed  CAS  Google Scholar 

  • Foster BA, Coffey HA, Morin MJ, Rastinejad F (1999) Pharmacological rescue of mutant p53 conformation and function. Science 286: 2507–2510.

    Article  PubMed  CAS  Google Scholar 

  • Friedlander RM (2003) Apoptosis and caspases in neurodegenerative diseases. N Engl J Med 348: 1365–1375.

    Article  PubMed  CAS  Google Scholar 

  • Frydman J (2001) Folding of newly translated proteins in vivo: the role of molecular chaperones. Annu Rev Biochem 70: 603–647.

    Article  PubMed  CAS  Google Scholar 

  • Gamez A, Perez B, Ugarte M, Desviat LR (2000) Expression analysis of phenylketonuria mutations. Effect on folding and stability of the phenylalanine hydroxylase protein. J Biol Chem 275: 29737–29742.

    Article  PubMed  CAS  Google Scholar 

  • Gelman MS, Kopito RR (2003) Cystic fibrosis: premature degradation of mutant proteins as a molecular disease mechanism. Methods Mol Biol 232: 27–37.

    PubMed  CAS  Google Scholar 

  • Gestwicki JE, Crabtree GR, Graef IA (2004) Harnessing chaperones to generate small-molecule inhibitors of amyloid beta aggregation. Science 306: 865–869.

    Article  PubMed  CAS  Google Scholar 

  • Gregersen N, Winter VS, Corydon MJ, etal (1998) Identification of four new mutations in the short-chain acyl-CoA dehydrogenase (SCAD) gene in two patients: one of the variant alleles, 511CT, is present at an unexpectedly high frequency in the general population, as was the case for 625GA, together conferring susceptibility to ethylmalonic aciduria. Hum Mol Genet 7: 619–627.

    Article  PubMed  CAS  Google Scholar 

  • Gregersen N, Andresen BS, Corydon MJ, etal (2001) Mutation analysis in mitochondrial fatty acid oxidation defects: exemplified by acyl-CoA dehydrogenase deficiencies, with special focus on genotype-phenotype relationship. Hum Mutat 18: 169–189.

    Article  PubMed  CAS  Google Scholar 

  • Gregersen N, Bross P, Andresen BS (2004) Genetic defects in fatty acid beta-oxidation and acyl-CoA dehydrogenases. Eur J Biochem 271: 470–482.

    Article  PubMed  CAS  Google Scholar 

  • Gregersen N, Bross P, Jórgensen MM (2005) Protein folding and misfolding: the role of cellular protein quality control systems in inherited disorders. In: Scriver CR, Beaudetal, Valle D, Sly WS, Childs B, Kinzler KW, Vogelstein B. MMBID-ONLINE: http://genetics.accessmedicine.com. McGraw-Hill, New York, Chapter 13.1.

    Google Scholar 

  • Grune T, Jung T, Merker K, Davies KJ (2004) Decreased proteolysis caused by protein aggregates, inclusion bodies, plaques, lipofuscin, ceroid, and ‘aggresomes’ during oxidative stress, aging, and disease. Int J Biochem Cell Biol 36: 2519–2530.

    Article  PubMed  CAS  Google Scholar 

  • Hansen JJ, Durr A, Cournu-Rebeix I, etal (2002) Hereditary spastic paraplegia SPG13 is associated with a mutation in the gene encoding the mitochondrial chaperonin Hsp60. Am J Hum Genet 70: 1328–1332.

    Article  PubMed  CAS  Google Scholar 

  • Hayden MR, Kremer B (2001) Huntington disease. In: Scriver CR, Beaudetal, Sly WS, Valle D, eds; Childs B, Kinzler KW, Vogelstein B, assoc, eds. The Metabolic and Molecular Bases of Inherited Disease, 8th edn. New York: McGraw-Hill, 5677–5701.

    Google Scholar 

  • Haynes CM, Titus EA, Cooper AA (2004) Degradation of misfolded proteins prevents ER-derived oxidative stress and cell death. Mol Cell 15: 767–776.

    Article  PubMed  CAS  Google Scholar 

  • Ilkovski B, Nowak KJ, Domazetovska A, etal (2004) Evidence for a dominant-negative effect in ACTA1 nemaline myopathy caused by abnormal folding, aggregation and altered polymerization of mutant actin isoforms. Hum Mol Genet 13: 1727–1743.

    Article  PubMed  CAS  Google Scholar 

  • Jakobsen LD, Jensen PH (2003) Parkinson's disease: alpha-synuclein and parkin in protein aggregation and the reversal of unfolded protein stress. Methods Mol Biol 232: 57–66.

    PubMed  CAS  Google Scholar 

  • Jana NR, Tanaka M, Wang G, Nukina N (2000) Polyglutamine length-dependent interaction of Hsp40 and Hsp70 family chaperones with truncated N-terminal huntingtin: their role in suppression of aggregation and cellular toxicity. Hum Mol Genet 9: 2009–2018.

    Article  PubMed  CAS  Google Scholar 

  • Jorgensen MM, Bross P, Gregersen N (2003) Protein quality control in the endoplasmic reticulum. APMIS Suppl 86–91.

  • Kayed R, Head E, Thompson JL, etal (2003) Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science 300: 486–489.

    Article  PubMed  CAS  Google Scholar 

  • Kopito RR (2000) Aggresomes, inclusion bodies and protein aggregation. Trends Cell Biol 10: 524–530.

    Article  PubMed  CAS  Google Scholar 

  • Levine B, Klionsky DJ (2004) Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell 6: 463–477.

    Article  PubMed  CAS  Google Scholar 

  • Lindquist S, Craig EA (1988) The heat-shock proteins. Annu Rev Genet 22: 631–677.

    Article  PubMed  CAS  Google Scholar 

  • Lotharius J, Brundin P (2002) Impaired dopamine storage resulting from alpha-synuclein mutations may contribute to the pathogenesis of Parkinson's disease. Hum Mol Genet 11: 2395–2407.

    Article  PubMed  CAS  Google Scholar 

  • Maquat LE (2005) Nonsense-mediated mRNA decay in mammals. J Cell Sci 118: 1773–1776.

    Article  PubMed  CAS  Google Scholar 

  • Milewski MI, Mickle JE, Forrest JK, Stanton BA, Cutting GR (2002) Aggregation of misfolded proteins can be a selective process dependent upon peptide composition. J Biol Chem 277: 34462–34470.

    Article  PubMed  CAS  Google Scholar 

  • Miller TW, Messer A (2005) Intrabody applications in neurological disorders: progress and future prospects. Mol Ther 12: 394–401.

    Article  PubMed  CAS  Google Scholar 

  • Miller VM, Xia H, Marrs GL, etal (2003) Allele-specific silencing of dominant disease genes. Proc Natl Acad Sci USA 100: 7195–7200.

    Article  PubMed  CAS  Google Scholar 

  • Morello JP, Salahpour A, Petaja-Repo UE, etal (2001) Association of calnexin with wild type and mutant AVPR2 that causes nephrogenic diabetes insipidus. Biochem 40: 6766–6775.

    Article  CAS  Google Scholar 

  • Morishima N (2005) Control of cell fate by Hsp70: more than an evanescent meeting. J Biochem (Tokyo) 137: 449–453.

    CAS  Google Scholar 

  • Muchowski PJ, Walker JL (2005) Modulation of neurodegeneration by molecular chaperones. Nat Rev Neurosci 6: 11–22.

    Article  PubMed  CAS  Google Scholar 

  • Nagan N, Kruckeberg KE, Tauscher AL, Snow BK, Rinaldo P, Matern D (2003) The frequency of short-chain acyl-CoA dehydrogenase gene variants in the US population and correlation with the C(4)-acylcarnitine concentration in newborn blood spots. Mol Genet Metab 78: 239–246.

    Article  PubMed  CAS  Google Scholar 

  • Okado-Matsumoto A, Fridovich I (2002) Amyotrophic lateral sclerosis: a proposed mechanism. Proc Natl Acad Sci USA 99: 9010–9014.

    PubMed  CAS  Google Scholar 

  • Pedersen CB, Bross P, Winter VS, etal (2003) Misfolding, degradation, and aggregation of variant proteins. The molecular pathogenesis of short chain acyl-CoA dehydrogenase (SCAD) deficiency. J Biol Chem 278: 47449–47458.

    Article  PubMed  CAS  Google Scholar 

  • Perlmutter DH (2002) Chemical chaperones: a pharmacological strategy for disorders of protein folding and trafficking. Pediatr Res 52: 832–836.

    Article  PubMed  Google Scholar 

  • Perlmutter DH (2003) Alpha1-antitrypsin deficiency: liver disease associated with retention of a mutant secretory glycoprotein in the endoplasmic reticulum. Methods Mol Biol 232: 39–56.

    PubMed  CAS  Google Scholar 

  • Pey AL, Desviat LR, Gamez A, Ugarte M, Perez B (2003) Phenylketonuria: genotype—phenotype correlations based on expression analysis of structural and functional mutations in PAH. Hum Mutat 21: 370–378.

    Article  PubMed  CAS  Google Scholar 

  • Qin ZH, Gu ZL (2004) Huntingtin processing in pathogenesis of Huntington disease. Acta Pharmacol Sin 25: 1243–1249.

    PubMed  CAS  Google Scholar 

  • Rattan SI (2004) Hormetic mechanisms of anti-aging and rejuvenating effects of repeated mild heat stress on human fibroblasts in vitro. Rejuvenation Res 7: 40–48.

    Article  PubMed  Google Scholar 

  • Ron I, Horowitz M (2005) ER retention and degradation as the molecular basis underlying Gaucher disease heterogeneity. Hum Mol Genet 14: 2387–2398.

    Article  PubMed  CAS  Google Scholar 

  • Rubenstein RC, Zeitlin PL (2000) Sodium 4-phenylbutyrate downregulates Hsc70: implications for intracellular trafficking of DeltaF508-CFTR. Am J Physiol Cell Physiol 278: C259—C267.

    PubMed  CAS  Google Scholar 

  • Rubenstein RC, Egan ME, Zeitlin PL (1997) In vitro pharmacologic restoration of CFTR-mediated chloride transport with sodium 4-phenylbutyrate in cystic fibrosis epithelial cells containing delta F508-CFTR. J Clin Invest 100: 2457–2465.

    Article  PubMed  CAS  Google Scholar 

  • Saarela J, Laine M, Oinonen C, etal (2001) Molecular pathogenesis of a disease: structural consequences of aspartylglucosaminuria mutations. Hum Mol Genet 10: 983–995.

    Article  PubMed  CAS  Google Scholar 

  • Sawkar AR, Cheng WC, Beutler E, Wong CH, Balch WE, Kelly JW (2002) Chemical chaperones increase the cellular activity of N370S beta-glucosidase: a therapeutic strategy for Gaucher disease. Proc Natl Acad Sci USA 99: 15428–15433.

    Article  PubMed  CAS  Google Scholar 

  • Schon EA, Manfredi G (2003) Neuronal degeneration and mitochondrial dysfunction. J Clin Invest 111: 303–312.

    Article  PubMed  CAS  Google Scholar 

  • Schubert U, Anton LC, Gibbs J, Norbury CC, Yewdell JW, Bennink JR (2000) Rapid degradation of a large fraction of newly synthesized proteins by proteasomes. Nature 404: 770–774.

    Article  PubMed  CAS  Google Scholar 

  • Scriver CR, Kaufman S (2001) Hyperphenylalanemia: phenylalenine hydroxylase deficiency. In: Scriver CR, Beaudetal, Sly WS, Valle D, eds; Childs B, Kinzler KW, Vogelstein B, assoc, eds. The Metabolic and Molecular Bases of Inherited Disease, 8th edn. New York: McGraw-Hill, 1667–1724.

    Google Scholar 

  • Sherman MY, Goldberg AL (2001) Cellular defenses against unfolded proteins: a cell biologist thinks about neurodegenerative diseases. Neuron 29: 15–32.

    Article  PubMed  CAS  Google Scholar 

  • Smith MA, Drew KL, Nunomura A, etal (2002) Amyloid-beta, tau alterations and mitochondrial dysfunction in Alzheimer disease: the chickens or the eggs? Neurochem Int 40: 527–531.

    Article  PubMed  CAS  Google Scholar 

  • Sorensen CB, Andresen BS, Jensen UB, etal (2003) Functional testing of keratin 14 mutant proteins associated with the three major subtypes of epidermolysis bullosa simplex. Exp Dermatol 12: 472–479.

    Article  PubMed  CAS  Google Scholar 

  • Stefani M, Dobson CM (2003) Protein aggregation and aggregate toxicity: new insights into protein folding, misfolding diseases and biological evolution. J Mol Med 81: 678–699.

    Article  PubMed  CAS  Google Scholar 

  • Stone DL, Slavotinek A, Bouffard GG, etal (2000) Mutation of a gene encoding a putative chaperonin causes McKusick—Kaufman syndrome. Nature Genetics 25: 79–82.

    Article  PubMed  CAS  Google Scholar 

  • Suhr ST, Senut MC, Whitelegge JP, Faull KF, Cuizon DB, Gage FH (2001) Identities of sequestered proteins in aggregates from cells with induced polyglutamine expression. J Cell Biol 153: 283–294.

    Article  PubMed  CAS  Google Scholar 

  • Tanaka M, Machida Y, Nukina N (2005) A novel therapeutic strategy for polyglutamine diseases by stabilizing aggregation-prone proteins with small molecules. J Mol Med 83: 343–352.

    Article  PubMed  CAS  Google Scholar 

  • Teckman JH (2004) Lack of effect of oral 4-phenylbutyrate on serum alpha-1-antitrypsin in patients with alpha-1-antitrypsin deficiency: a preliminary study. J Pediatr Gastroenterol Nutr 39: 34–37.

    PubMed  CAS  Google Scholar 

  • Trinklein ND, Murray JI, Hartman SJ, Botstein D, Myers RM (2004) The role of heat shock transcription factor 1 in the genome-wide regulation of the mammalian heat shock response. Mol Biol Cell 15: 1254–1261.

    Article  PubMed  CAS  Google Scholar 

  • Ulloa-Aguirre A, Janovick JA, Brothers SP, Conn PM (2004) Pharmacologic rescue of conformationally-defective proteins: implications for the treatment of human disease. Traffic 5: 821–837.

    Article  PubMed  CAS  Google Scholar 

  • Uversky VN (2002) Natively unfolded proteins: a point where biology waits for physics. Protein Sci 11: 739–756.

    Article  PubMed  CAS  Google Scholar 

  • Vang S, Corydon TJ, Borglum AD, etal (2005) Actin mutations in hypertrophic and dilated cardiomyopathy cause inefficient protein folding and perturbed filament formation. FEBS J 272: 2037–2049.

    Article  PubMed  CAS  Google Scholar 

  • Varga K, Jurkuvenaite A, Wakefield J, etal (2004) Efficient intracellular processing of the endogenous cystic fibrosis transmembrane conductance regulator in epithelial cell lines. J Biol Chem 279: 22578–22584.

    Article  PubMed  CAS  Google Scholar 

  • Verbeke P, Fonager J, Clark BF, Rattan SI (2001) Heat shock response and ageing: mechanisms and applications. Cell Biol Int 25: 845–857.

    Article  PubMed  CAS  Google Scholar 

  • Ward CL, Kopito RR (1994) Intracellular turnover of cystic fibrosis transmembrane conductance regulator. Inefficient processing and rapid degradation of wild-type and mutant proteins. J Biol Chem 269: 25710–25718.

    PubMed  CAS  Google Scholar 

  • Waters PJ (2003) How PAH gene mutations cause hyper-phenylalaninemia and why mechanism matters: insights from in vitro expression. Hum Mutat 21: 357–369.

    Article  PubMed  CAS  Google Scholar 

  • Waters PJ, Parniak MA, Akerman BR, Jones AO, Scriver CR (1999) Missense mutations in the phenylalanine hydroxylase gene (PAH) can cause accelerated proteolytic turnover of PAH enzyme: a mechanism underlying phenylketonuria. J Inherit Metab Dis 22: 208–212.

    Article  PubMed  CAS  Google Scholar 

  • Welsh MJ, Ramsey BN, Accurso F, Cutting GR (2001) Cystic fibrosis. In: Scriver CR, Beaudet al, Sly WS, Valle D, eds; Childs B, Kinzler KW, Vogelstein B, assoc, eds. The Metabolic and Molecular Bases of Inherited Disease, 8th edn. New York: McGraw-Hill, 5121–5188.

    Google Scholar 

  • Westerheide SD, Morimoto RI (2005) Heat shock response modulators as therapeutic tools for diseases of protein conformation. J Biol Chem 280: 33097–33100.

    Article  PubMed  CAS  Google Scholar 

  • Winyard PG, Moody CJ, Jacob C (2005) Oxidative activation of antioxidant defence. Trends Biochem Sci 30: 453–461.

    Article  PubMed  CAS  Google Scholar 

  • Wiseman RL, Balch WE (2005) A new pharmacology — drugging stressed folding pathways. Trends Mol Med 11: 347–350.

    Article  PubMed  CAS  Google Scholar 

  • Yin W, Kren BT, Steer CJ (2005) Site-specific base changes in the coding or promoter region of the human beta- and gamma-globin genes by single-stranded oligonucleotides. Biochem J 390: 253–261.

    Article  PubMed  CAS  Google Scholar 

  • Zaccai G (2000) How soft is a protein? A protein dynamics force constant measured by neutron scattering. Science 288: 1604–1607.

    Article  PubMed  CAS  Google Scholar 

  • Zhao Q, Wang J, Levichkin IV, Stasinopoulos S, Ryan MT, Hoogenraad NJ (2002) A mitochondrial specific stress response in mammalian cells. EMBO J 21: 4411–4419.

    Article  PubMed  CAS  Google Scholar 

  • Zhou A, Stein PE, Huntington JA, Sivasothy P, Lomas DA, Carrell RW (2004) How small peptides block and reverse serpin polymerisation. J Mol Biol 342: 931–941.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicating editor: Jean-Marie Saudubray

Competing interests: None declared

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gregersen, N. Protein misfolding disorders: Pathogenesis and intervention. J Inherit Metab Dis 29, 456–470 (2006). https://doi.org/10.1007/s10545-006-0301-4

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10545-006-0301-4

Keywords

Navigation