Label free Impedimetric Immunosensor for effective bladder Cancer detection in clinical urine samples


Galectin-1 protein has been recently recognized as a valuable urinary biomarker for the diagnosis and prognosis of bladder cancer. Herein, we present a sensitive and specific impedimetric immunosensor for the quantitative and label free detection of Galectin-1 protein in clinical urine samples. The immunosensor consists of nine gold interdigitated microelectrodes (3 × 3 array), which can simultaneously monitor multiple immunoreactions by analyzing the normalized impedance variations at each microelectrode during immunosensing. To obtain enhanced sensitivities, we have utilized Galectin-1/Al2O3 nanoprobes (Galectin-1 antibody conjugated to alumina nanoparticles) that can be selectively trapped on the microelectrode surface using positive dielectrophoresis (p-DEP). Preliminary studies highlight the feasibility of the proposed immunosensor for Gal −1 detection in T24 cell lysate spiked phosphate buffer saline and artificial urine samples with a limit of detection that is estimated to be in the pg/ml range. To verify its practical feasibility, we have tested the immunosensor for Galectin-1 detection in clinical urine samples obtained from normal patients and those diagnosed with bladder cancer. Analysis of the clinical tests shows that the median normalized impedance variation during immunosensing for 22 cancer patients and 26 normal patients is 27% and 10%, respectively, with an identified cutoff point of 19.5% above which the sensitivity and specificity of bladder cancer detection was 82.1% and 80.8%, respectively. Based on these results, the proposed immunosensor shows promise for bladder cancer diagnosis and prognosis in a point of care format, thus enabling improved public health monitoring.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3


  1. K. Chamie, M.S. Litwin, J.C. Bassett, T.J. Daskivich, J. Lai, J.M. Hanley, Cancer 119(17), 3219–3227 (2013)

    Article  Google Scholar 

  2. P.S. Sullivan, J.B. Chan, M.R. Levin, J. Rao, American journal of translational research2(4), 412 (2010)

    Google Scholar 

  3. G. Cheung, A. Sahai, M. Billia, P. Dasgupta, M.S. Khan, BMC medicine11(1), 13 (2013)

    Article  Google Scholar 

  4. Moina, C., & Ybarra, G., In Advances in immunoassay technology. InTech, 2012

  5. S. Sharma, H. Byrne, R. O'Kennedy, J Essays Biochem. 60(1), 9–18 (2016)

    Article  Google Scholar 

  6. Gutschow, P., Schmidt, P. J., Han, H., Ostland, V., Bartnikas, T. B., Pettiglio, M. A., & Fleming, M. D., Haematologica, haematol-2014

  7. L. Liu, X. Zhou, J.S. Wilkinson, P. Hua, B. Song, H. Shi, Scientific Reports 7(1), 3655 (2017)

    Article  Google Scholar 

  8. Felix, F. S., & Angnes, L., Biosensors and Bioelectronics, 2017

  9. X. Guo, C.S. Lin, S.H. Chen, R. Ye, V.C. Wu, Biosens. Bioelectron. 38(1), 177–183 (2012)

    Article  Google Scholar 

  10. S.V. Pereira, G.A. Messina, J. Raba, J. Chromatogr. B 878(2), 253–257 (2010)

    Article  Google Scholar 

  11. W. Wen, X. Yan, C. Zhu, D. Du, Y. Lin, Anal. Chem. 89(1), 138–156 (2016)

    Article  Google Scholar 

  12. C. H. Chuang and M. O. Shaikh, In Point of Care Diagnostics - New Progresses and Perspectives, pp.171-201, IAPC-OBC Publishing

  13. F. Lisdat, D. Schäfer, Anal. Bioanal. Chem. 391(5), 1555 (2008)

    Article  Google Scholar 

  14. Selvam, A. P., Wangzhou, A., Jacobs, M., Wu, T., Mohan, C., & Prasad, S., Future Science OA, 2017, 3(3), FSO224

  15. T.F. Wu, C.F. Li, L.H. Chien, K.H. Shen, H.Y. Huang, C.C. Su, A. Liao, C. J. Urol. 193(3), 1002–1008 (2015)

    Article  Google Scholar 

  16. N. Rubinstein, M. Alvarez, N.W. Zwirner, M.A. Toscano, J.M. Ilarregui, A. Bravo, et al., Cancer Cell 5(3), 241–251 (2004)

    Article  Google Scholar 

  17. C.H. Chuang, Y.C. Du, T.F. Wu, C.H. Chen, D.H. Lee, S.M. Chen, M.O. Shaikh, Biosens. Bioelectron. 84, 126–132 (2016a)

    Article  Google Scholar 

  18. S.M. Radke, E.C. Alocilja, Biosens. Bioelectron. 20(8), 1662–1667 (2005)

    Article  Google Scholar 

  19. R. Pethig, Biomicrofluidics 4(2), 022811 (2010)

    Article  Google Scholar 

  20. V. Nhan, Lab Chip 15(14), 3056–3064 (2015)

    Article  Google Scholar 

  21. T. Brooks, C.W. Keevil, Lett. App. Microbiol. 24, 203–206 (1997)

    Article  Google Scholar 

  22. C.H. Chuang, H.P. Wu, Y.W. Huang, C.H. Chen, D.H. Lee, T.F. Wu, IEEE Sensors J. 16(11), 4166–4173 (2016b)

    Article  Google Scholar 

  23. R. Milo, Bioessays. 35(12), 1050–1055 (2013)

    Article  Google Scholar 

  24. J.A. Hanley, B.J. McNeil, Radiology 143, 29–36 (1982)

    Article  Google Scholar 

Download references


The authors would like to thank the Ministry of Science and Technology (MOST), Taiwan, for financially supporting this research under Contract No. MOST 103-2218-E-218-001. In addition, we would like to thank the Chi-Mei Hospital in Tainan, Taiwan, for clinical collaboration under IRB No. 1040404.

Author contributions statements

M.O. Shaikh and C.H. Chuang wrote the main manuscript text, M.O. Shaikh and T.C. Huang prepared all the figures and performed ion concentration tests and clinical tests. T.F. Wu assisted with nanoprobe preparation and results discussion.

Author information



Corresponding author

Correspondence to Cheng-Hsin Chuang.

Ethics declarations

Competing interests

The author(s) declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material


(DOCX 575 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shaikh, M.O., Huang, T., Wu, T. et al. Label free Impedimetric Immunosensor for effective bladder Cancer detection in clinical urine samples. Biomed Microdevices 22, 45 (2020).

Download citation


  • Bladder Cancer
  • Impedance
  • Immunosensor
  • Dielectrophoresis
  • Clinical testing