Skip to main content
Log in

Hydrodynamic flow cytometer performance enhancement by two-dimensional acoustic focusing

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Conventional flow cytometers employ hydrodynamic focusing method to insure detection accuracy by forcing cells go through detected position. However, an increased flow velocity will significantly reduce detection precision due to a fact that cells will deviate center position and are easily silted in choke point. In an effort to overcome this limitation, a two-dimension ultrasonic particle focusing method are presented in this work to enhance the performance of flow cytometer. Two piezoelectric transducers are used to attach to a 250 μm × 250 μm rectangular fused silica flow channel to realize the modification. Finite element model simulation is performed for parametrical analysis and simplifying experiment design. 3 μm polystyrene fluorescent particles are adopted to test focusing effect. One dimension acoustic focusing is achieved at 2.95 MHz with single focusing node as well as 2, 3, 4 nodes focusing near 6, 9, 12 MHz respectively. The 2D focusing particle stream width in two dimensions is less than 10 μm. Results verified that this method is applicable for Jurkat cells. Sample flow maintains its stability without clogging up even at high sample concentration. Focusing still works at flow velocity over 100 μl/min. All these results certify this acoustic particles focusing method can enhance the performance of hydrodynamic flow cytometer by minor modification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • A. Adan, G. Alizada, Y. Kiraz, Y. Baran, A. Nalbant, Crit. Rev. Biotechnol. 37, 163–176 (2017)

    Article  Google Scholar 

  • D. Carugo, T. Octon, W. Messaoudi, A.L. Fisher, M. Carboni, N.R. Harris, et al., Lab Chip 14, 3830 (2014)

    Article  Google Scholar 

  • D.A. DeAngelis, G.W. Schulze, Phys. Procedia 87, 85–92 (2016)

    Article  Google Scholar 

  • M. Evander, J. Nilsson, Lab Chip 12, 4667–4676 (2012)

    Article  Google Scholar 

  • E.I. Galanzha, V.P. Zharov, Methods 57, 280–296, 7 (2012)

    Article  Google Scholar 

  • E.I. Galanzha, M.G. Viegas, T.I. Malinsky, A.V. Melerzanov, M.A. Juratli, M. Sarimollaoglu, D.A. Nedosekin, V.P. Zharov, Sci. Rep. 6, 21531 (2016)

    Article  Google Scholar 

  • G. Goddard, J.C. Martin, S.W. Graves, G. Kaduchak, Cytometry Part A 69A, 66–74 (2006)

    Article  Google Scholar 

  • G.R. Goddard, C.K. Sanders, J.C. Martin, G. Kaduchak, S.W. Graves, Anal. Chem. 79, 8740–8746 (2007)

    Article  Google Scholar 

  • J. Greenhall, F.G. Vasquez, B. Raeymaekers, Appl. Phys. Lett. 103, 074103 (2013)

    Article  Google Scholar 

  • O. Jakobsson, M. Antfolk, T. Laurell, Anal. Chem. 86, 6111–6114 (2014)

    Article  Google Scholar 

  • J.S. Jeong, J.W. Lee, C.Y. Lee, S.Y. Teh, A. Lee, K.K. Shung, Biomed. Microdevices 13, 779–788 (2011)

    Article  Google Scholar 

  • L. Johansson, J. Enlund, S. Johansson, I. Katardjiev, V. Yantchev, Biomed. Microdevices 14, 279–289 (2012)

    Article  Google Scholar 

  • J.T. Karlsen, H. Bruus, Physical Review E Statistical Nonlinear & Soft Matter Physics 85, 043010 (2011)

    Google Scholar 

  • F.W. Kuckuck, B.S. Edwards, L.A. Sklar, Cytometry Part B Clinical Cytometry 44, 83–90 (2001)

    Article  Google Scholar 

  • W.M. Lee, K. Grindle, T. Pappas, D.J. Marshall, M.J. Moser, E.L. Beaty, J. Clin. Microbiol. 45, 2626–2634 (2007)

    Article  Google Scholar 

  • H. Li, J.R. Friend, L.Y. Yeo, Biomed. Microdevices 9, 647–656 (2007)

    Article  Google Scholar 

  • Z. Li, P. Li, J. Xu, W. Shao, C. Wang, Y. Cui, IEEE international Ultrasonics symposium (IUS) (2017), pp. 1–4

    Google Scholar 

  • S. Liu, Y. Yang, Z. Ni, X. Guo, L. Luo, J. Tu, et al., Sensors 17, 1664 (2017)

    Article  Google Scholar 

  • G. Liu, F. He, Y. Li, H. Zhao, X. Li, H. Tang, et al., Biomed. Microdevices 21 (2019)

  • X. Ma, Q.L. Jun, R.S. Brock, M.J. Kenneth, Y. Ping, H. Xin-Hua, Phys. Med. Biol. 48, 4165 (2003)

    Article  Google Scholar 

  • F.G. Mitri, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56, 1059–1064 (2009)

    Article  Google Scholar 

  • F.G. Mitri, Z.E.A. Fellah, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55, 2469–2478 (2008)

    Article  Google Scholar 

  • R.J. Olson, A. Shalapyonok, D.J. Kalb, S.W. Graves, H.M. Sosik, Limnol. Oceanogr. Methods 15 (2017)

  • M.E. Piyasena, P.P.A. Suthanthiraraj, R.W. Applegate Jr., A.M. Goumas, T.A. Woods, G.P. López, Anal. Chem. 84, 1831–1839 (2012)

    Article  Google Scholar 

  • J. Shi, H. Huang, Z. Stratton, Y. Huang, T.J. Huang, Lab Chip 9, 3354–3359 (2009)

    Article  Google Scholar 

  • G.T. Silva, H. Bruus, Physical Review E Statistical Nonlinear & Soft Matter Physics 90, 063007 (2014)

    Article  Google Scholar 

  • Y. Sriphutkiat, Y. Zhou, Sensors Actuators A Phys. 263, 521–529 (2017)

    Article  Google Scholar 

  • T. Stratoudaki, M. Clark, P.D. Wilcox, Opt. Express 24, 21921 (2016)

    Article  Google Scholar 

  • P.P.A. Suthanthiraraj, M.E. Piyasena, T.A. Woods, M.A. Naivar, G.P. Lόpez, S.W. Graves, Methods 57, 259–271 (2012)

    Article  Google Scholar 

  • M. Ward, P. Turner, M. Dejohn, G. Kaduchak, Curr. Protocols Cytometry 49, 1.22.1–1.22.12 (2009a)

    Article  Google Scholar 

  • M. Ward, P. Turner, M. DeJohn, G. Kaduchak, Curr. Protocols Cytometry 1.22, 1–1.22. 12 (2009b)

    Google Scholar 

  • J. Xia, J. Yao, L.V. Wang, Electromagnetic Waves (Cambridge, Mass.) 147, 1–22 (2014)

    Google Scholar 

  • A. Yang, W. Hsieh, Biomed. Microdevices 9, 113–122 (2007)

    Article  Google Scholar 

  • C. Yang, Z. Li, P. Li, W. Shao, P. Bai, Y. Cui, IEEE international Ultrasonics symposium (IUS), 1–4 (2017)

  • L.Y. Yeo, J.R. Friend, Annu. Rev. Fluid Mech. 46, 379–406 (2014)

    Article  Google Scholar 

  • Y. Yu, W. Qiu, L. Sun, 2013 IEEE International Ultrasonics Symposium (IUS) (2013), pp. 2118–2121

    Google Scholar 

  • S. Yue, F. Lin, Q. Zhang, N. Epie, S. Dong, X. Shan, X. Shan, D. Liu, W. Chu, Z. Wang, J. Bao, Proc. Natl. Acad. Sci. 116, 6580–6585 (2019)

    Article  Google Scholar 

  • Q. Zhang, Y. Han, W. C. W, L. Zhang, J. Chang, Eur. Polym. J. 45, 550–556 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded by the National Natural Science Foundation of China (Grant No.11704397). The fluorescence labeled microspheres are supplied by Pengli Bai, who is also a faculty researcher with the Bio-Medical Diagnostics department, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences. Some of observing equipment are supported by Medical Optical Department of Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaoyao Cui.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Li, P., Xu, J. et al. Hydrodynamic flow cytometer performance enhancement by two-dimensional acoustic focusing. Biomed Microdevices 22, 27 (2020). https://doi.org/10.1007/s10544-020-00481-9

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10544-020-00481-9

Keywords

Navigation