Hydrodynamic flow cytometer performance enhancement by two-dimensional acoustic focusing

Abstract

Conventional flow cytometers employ hydrodynamic focusing method to insure detection accuracy by forcing cells go through detected position. However, an increased flow velocity will significantly reduce detection precision due to a fact that cells will deviate center position and are easily silted in choke point. In an effort to overcome this limitation, a two-dimension ultrasonic particle focusing method are presented in this work to enhance the performance of flow cytometer. Two piezoelectric transducers are used to attach to a 250 μm × 250 μm rectangular fused silica flow channel to realize the modification. Finite element model simulation is performed for parametrical analysis and simplifying experiment design. 3 μm polystyrene fluorescent particles are adopted to test focusing effect. One dimension acoustic focusing is achieved at 2.95 MHz with single focusing node as well as 2, 3, 4 nodes focusing near 6, 9, 12 MHz respectively. The 2D focusing particle stream width in two dimensions is less than 10 μm. Results verified that this method is applicable for Jurkat cells. Sample flow maintains its stability without clogging up even at high sample concentration. Focusing still works at flow velocity over 100 μl/min. All these results certify this acoustic particles focusing method can enhance the performance of hydrodynamic flow cytometer by minor modification.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. A. Adan, G. Alizada, Y. Kiraz, Y. Baran, A. Nalbant, Crit. Rev. Biotechnol. 37, 163–176 (2017)

    Article  Google Scholar 

  2. D. Carugo, T. Octon, W. Messaoudi, A.L. Fisher, M. Carboni, N.R. Harris, et al., Lab Chip 14, 3830 (2014)

    Article  Google Scholar 

  3. D.A. DeAngelis, G.W. Schulze, Phys. Procedia 87, 85–92 (2016)

    Article  Google Scholar 

  4. M. Evander, J. Nilsson, Lab Chip 12, 4667–4676 (2012)

    Article  Google Scholar 

  5. E.I. Galanzha, V.P. Zharov, Methods 57, 280–296, 7 (2012)

    Article  Google Scholar 

  6. E.I. Galanzha, M.G. Viegas, T.I. Malinsky, A.V. Melerzanov, M.A. Juratli, M. Sarimollaoglu, D.A. Nedosekin, V.P. Zharov, Sci. Rep. 6, 21531 (2016)

    Article  Google Scholar 

  7. G. Goddard, J.C. Martin, S.W. Graves, G. Kaduchak, Cytometry Part A 69A, 66–74 (2006)

    Article  Google Scholar 

  8. G.R. Goddard, C.K. Sanders, J.C. Martin, G. Kaduchak, S.W. Graves, Anal. Chem. 79, 8740–8746 (2007)

    Article  Google Scholar 

  9. J. Greenhall, F.G. Vasquez, B. Raeymaekers, Appl. Phys. Lett. 103, 074103 (2013)

    Article  Google Scholar 

  10. O. Jakobsson, M. Antfolk, T. Laurell, Anal. Chem. 86, 6111–6114 (2014)

    Article  Google Scholar 

  11. J.S. Jeong, J.W. Lee, C.Y. Lee, S.Y. Teh, A. Lee, K.K. Shung, Biomed. Microdevices 13, 779–788 (2011)

    Article  Google Scholar 

  12. L. Johansson, J. Enlund, S. Johansson, I. Katardjiev, V. Yantchev, Biomed. Microdevices 14, 279–289 (2012)

    Article  Google Scholar 

  13. J.T. Karlsen, H. Bruus, Physical Review E Statistical Nonlinear & Soft Matter Physics 85, 043010 (2011)

    Google Scholar 

  14. F.W. Kuckuck, B.S. Edwards, L.A. Sklar, Cytometry Part B Clinical Cytometry 44, 83–90 (2001)

    Article  Google Scholar 

  15. W.M. Lee, K. Grindle, T. Pappas, D.J. Marshall, M.J. Moser, E.L. Beaty, J. Clin. Microbiol. 45, 2626–2634 (2007)

    Article  Google Scholar 

  16. H. Li, J.R. Friend, L.Y. Yeo, Biomed. Microdevices 9, 647–656 (2007)

    Article  Google Scholar 

  17. Z. Li, P. Li, J. Xu, W. Shao, C. Wang, Y. Cui, IEEE international Ultrasonics symposium (IUS) (2017), pp. 1–4

    Google Scholar 

  18. S. Liu, Y. Yang, Z. Ni, X. Guo, L. Luo, J. Tu, et al., Sensors 17, 1664 (2017)

    Article  Google Scholar 

  19. G. Liu, F. He, Y. Li, H. Zhao, X. Li, H. Tang, et al., Biomed. Microdevices 21 (2019)

  20. X. Ma, Q.L. Jun, R.S. Brock, M.J. Kenneth, Y. Ping, H. Xin-Hua, Phys. Med. Biol. 48, 4165 (2003)

    Article  Google Scholar 

  21. F.G. Mitri, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56, 1059–1064 (2009)

    Article  Google Scholar 

  22. F.G. Mitri, Z.E.A. Fellah, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55, 2469–2478 (2008)

    Article  Google Scholar 

  23. R.J. Olson, A. Shalapyonok, D.J. Kalb, S.W. Graves, H.M. Sosik, Limnol. Oceanogr. Methods 15 (2017)

  24. M.E. Piyasena, P.P.A. Suthanthiraraj, R.W. Applegate Jr., A.M. Goumas, T.A. Woods, G.P. López, Anal. Chem. 84, 1831–1839 (2012)

    Article  Google Scholar 

  25. J. Shi, H. Huang, Z. Stratton, Y. Huang, T.J. Huang, Lab Chip 9, 3354–3359 (2009)

    Article  Google Scholar 

  26. G.T. Silva, H. Bruus, Physical Review E Statistical Nonlinear & Soft Matter Physics 90, 063007 (2014)

    Article  Google Scholar 

  27. Y. Sriphutkiat, Y. Zhou, Sensors Actuators A Phys. 263, 521–529 (2017)

    Article  Google Scholar 

  28. T. Stratoudaki, M. Clark, P.D. Wilcox, Opt. Express 24, 21921 (2016)

    Article  Google Scholar 

  29. P.P.A. Suthanthiraraj, M.E. Piyasena, T.A. Woods, M.A. Naivar, G.P. Lόpez, S.W. Graves, Methods 57, 259–271 (2012)

    Article  Google Scholar 

  30. M. Ward, P. Turner, M. Dejohn, G. Kaduchak, Curr. Protocols Cytometry 49, 1.22.1–1.22.12 (2009a)

    Article  Google Scholar 

  31. M. Ward, P. Turner, M. DeJohn, G. Kaduchak, Curr. Protocols Cytometry 1.22, 1–1.22. 12 (2009b)

    Google Scholar 

  32. J. Xia, J. Yao, L.V. Wang, Electromagnetic Waves (Cambridge, Mass.) 147, 1–22 (2014)

    Google Scholar 

  33. A. Yang, W. Hsieh, Biomed. Microdevices 9, 113–122 (2007)

    Article  Google Scholar 

  34. C. Yang, Z. Li, P. Li, W. Shao, P. Bai, Y. Cui, IEEE international Ultrasonics symposium (IUS), 1–4 (2017)

  35. L.Y. Yeo, J.R. Friend, Annu. Rev. Fluid Mech. 46, 379–406 (2014)

    Article  Google Scholar 

  36. Y. Yu, W. Qiu, L. Sun, 2013 IEEE International Ultrasonics Symposium (IUS) (2013), pp. 2118–2121

    Google Scholar 

  37. S. Yue, F. Lin, Q. Zhang, N. Epie, S. Dong, X. Shan, X. Shan, D. Liu, W. Chu, Z. Wang, J. Bao, Proc. Natl. Acad. Sci. 116, 6580–6585 (2019)

    Article  Google Scholar 

  38. Q. Zhang, Y. Han, W. C. W, L. Zhang, J. Chang, Eur. Polym. J. 45, 550–556 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded by the National Natural Science Foundation of China (Grant No.11704397). The fluorescence labeled microspheres are supplied by Pengli Bai, who is also a faculty researcher with the Bio-Medical Diagnostics department, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences. Some of observing equipment are supported by Medical Optical Department of Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yaoyao Cui.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Li, P., Xu, J. et al. Hydrodynamic flow cytometer performance enhancement by two-dimensional acoustic focusing. Biomed Microdevices 22, 27 (2020). https://doi.org/10.1007/s10544-020-00481-9

Download citation

Keywords

  • Hydrodynamic cytometer
  • Acoustic focusing
  • Piezoelectric transducer
  • FEM method
  • Performance enhancement