Skip to main content
Log in

Investigation of uniform sized multicellular spheroids raised by microwell arrays after the combined treatment of electric field and anti-cancer drug

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Nowadays, cancer disease is continuously identified as the leading cause of mortality worldwide. Cancer chemotherapeutic agents have been continuously developing to achieve high curative effectiveness and low side effects. However, solid tumors present the properties of low drug penetration and resistance of quiescent cells. Radiation therapy is concurrently given in some cases; but it induces different levels of adverse effects. In the current work, uniform sized multicellular spheroids were raised by microwell arrays to mimic the architecture of solid tumors. Investigation of the response of the spheroids was conducted after the treatment of alternating electric field. The result showed that the electric field could induce early apoptosis by disturbing cell membrane. Moreover, combined treatment of electric field and anti-cancer drug was applied to the spheroids. The electric field synergistically enhanced the treatment efficacy because the anti-cancer drug could permeate through the disrupted cell membrane. Significant improvement of late apoptosis was shown by the combined treatment. Because the electric field treatment induces limited side effect to the patient, lower dosage of anti-cancer drug may be applied to the patients for achieving curative effectiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • N.H. Baek, O.W. Seo, M.S. Kim, J. Hulme, S.S.A. An, Monitoring the effects of doxorubicin on 3D-spheroid tumor cells in real-time. Oncotargets Ther. 9, 7207–7218 (2016)

    Article  Google Scholar 

  • G.C. Barnett, C.M.L. West, A.M. Dunning, R.M. Elliott, C.E. Coles, et al., Normal tissue reactions to radiotherapy: Towards tailoring treatment dose by genotype. Nature Rev. 9, 134–142 (2009)

    Google Scholar 

  • K.K. Brown, L. Montaser-Kouhsari, A.H. Beck, A. Toker, MERIT40 is a AKT substrate that promotes resolution of DNA damage induced by chemotherapy. Cell Rep. 11, 1358–1366 (2015)

    Article  Google Scholar 

  • D.N. Carney, J.B. Mitchell, T.J. Kinsella, In vitro radiation and chemotherapy sensitivity of established cell lines of human small cell lung cancer and its large cell morphological variants. Cancer Res. 43, 2806–2811 (1983)

    Google Scholar 

  • M. Charnley, M. Textor, A. Khademhosseini, M.P. Lutolf, Integration column: Microwell arrays for mammalian cell culture. Integr. Biol. 1(11–12), 625–634 (2009)

    Article  Google Scholar 

  • Y.C. Chen, X. Lou, Z. Zhang, P. Ingram, E. Yoon, High-throughput cancer cell sphere formation for characterizing the efficacy of photo dynamic therapy in 3D cell cultures. Sci. Rep. 5, 12175 (2015)

    Article  Google Scholar 

  • E.C. Costa, V.M. Gaspar, P. Coutinho, I.J. Correia, Optimization of liquid overlay technique to formulate heterogenic 3D co-culture models. Biotechnol. Bioeng. 111, 1672–1685 (2014)

    Article  Google Scholar 

  • C. Dubessy, J.M. Merlin, C. Marchal, F. Guillemin, Spheroids in radiobiology and photodynamic therapy. Crit Rev Oncol Hematol 36(2–3), 179–192 (2000)

    Article  Google Scholar 

  • E. Fennema, N. Rivron, J. Rouwkema, C. van Blitterswijk, J. de Boer, Spheroid culture as a tool for creating 3D complex tissues. Trends Biotechnol. 31, 108–115 (2013)

    Article  Google Scholar 

  • J. Friedrich, R. Ebner, L.A. Kunz-Schughart, Experimental anti-tumor therapy in 3-D: Spheroids–old hat or new challenge? Int. J. Radiat. Biol. 83(11–12), 849–871 (2007)

    Article  Google Scholar 

  • N. Gera, N., A. Yang, T.S. Holtzman, S.X. Lee, E.T. Wong, et al., Tumor treating fields perturb the localization of septins and cause aberrant mitotic exit. PLoS One 2015, 10, e125269

  • M. Giladi, U. Weinberg, R.S. Schneiderman, Y. Porat, M. Munster, et al., Alternating electric fields (tumor-treating fields therapy) can improve chemotherapy treatment efficacy in non-small cell lung cancer both in vitro and in vivo. Semin. Oncol. 41, S35–S41 (2014)

    Article  Google Scholar 

  • M. Giladi, R.S. Schneiderman, T. Voloshin, Y. Porat, M. Munster, et al., Mitotic spindle disruption by alternating electric fields leads to improper chromosome segregation and mitotic catastrophe in cancer cells. Sci. Rep. 5, 18046 (2015)

    Article  Google Scholar 

  • X. Gong, C. Lin, J. Cheng, J. Su, H. Zhao, T. Liu, X. Wen, P. Zhao, Generation of multicellular tumor spheroids with microwell-based agarose scaffolds for drug testing. PLoS One 10(6), e0130348 (2015)

    Article  Google Scholar 

  • F. Hirschhaeuser, H. Menne, C. Dittfeld, J. West, W. Mueller-Klieser, L.A. Kunz-Schughart, Multicellular tumor spheroids: An underestimated catching up again. J. Biotechnol. 148(1), 3–15 (2010)

    Article  Google Scholar 

  • C. Isanbor, D. O’Hagan, Fluorine in medicinal chemistry: A review of anti-cancer agents. J. Fluor. Chem. 127, 303–319 (2006)

    Article  Google Scholar 

  • E.H. Kim, Y.J. Kim, H.S. Song, Y.K. Jeong, J.Y. Lee, et al., Biological effect of an alternating electric field on cell proliferation and synergistic antimitotic effect in combination with ionizing radiation. Oncotarget 7, 62267–62279 (2016a)

    Article  Google Scholar 

  • E.H. Kim, H.S. Song, S.H. Yoo, M. Yoon, Tumor treating fields inhibit glioblastoma cell migration, invasion and angiogenesis. Oncotarget 7, 65125–65136 (2016b)

    Article  Google Scholar 

  • E.D. Kirson, Z. Gurvich, R. Schneiderman, E. Dekel, A. Itzhaki, et al., Disruption of Cancer cell replication by alternating electric fields. Cancer Res. 64, 3288–3295 (2004)

    Article  Google Scholar 

  • E.D. Kirson, V. Dbaly, F. Tovarys, J. Vymazal, J.F. Soustiel, et al., Alternating electric fields arrest cell proliferation in animal tumor models and human brain tumors. Proc. Natl. Acad. Sci. U. S. A. 104, 10152–10157 (2007)

    Article  Google Scholar 

  • E.D. Kirson, M. Giladi, Z. Gurvich, A. Itzhaki, D. Mordechovich, et al., Alternating electric fields (TTFields) inhibit metastatic spread of solid tumors to the lungs. Clin Exp Metastas 26, 633–640 (2009)

    Article  Google Scholar 

  • V. Koshkin, L.E. Ailes, G. Liu, S.N. Krylov, Metabolic suppression of a drug-resistant subpopulation in cancer spheroid cells. J. Cell. Biochem. 117, 59–65 (2016)

    Article  Google Scholar 

  • J. Laurent, C. Frongia, M. Cazales, O. Mondesert, B. Ducommun, V. Lobjois, Multicellular tumor spheroid models to explore cell cycle checkpoints in 3D. BMC Cancer 13, 73 (2013)

    Article  Google Scholar 

  • R.Z. Lin, H.Y. Chang, Recent advances in three-dimensional multicellular spheroid culture for biomedical research. Biotechnol. J. 3, 1172–1184 (2008)

    Article  Google Scholar 

  • F.F. Liu, C. Peng, B.I. Escher, E. Fantino, C. Giles, S. Were, L. Duffy, J.C. Ng, Hanging drop: An in vitro air toxic exposure model using human lung cells in 2D and 3D structures. J. Hazard. Mater. 261, 701–710 (2013)

    Article  Google Scholar 

  • P. Longati, X. Jia, J. Eimer, A. Wagman, M.R. Witt, et al., 3D pancreatic carcinoma spheroids induce a matrix-rich, chemoresistant phenotype offering a better model for drug testing. BMC Cancer 13, 95 (2013) (13pp)

    Article  Google Scholar 

  • F. Pampaloni, E.G. Reynaud, E.H.K. Stelzer, The third dimension bridges the gap between cell culture and live tissue. Nat Rev Mole Cell Bio 8, 839–845 (2007)

    Article  Google Scholar 

  • F. Perche, V.P. Torchilin, Cancer cell spheroids as a model to evaluate chemotherapy protocols. Cancer Biol Ther 13, 1205–1213 (2012)

    Article  Google Scholar 

  • M. Pless, C. Drogege, R. von Moss, M. Salzberg, D. Betticher, A phase I/II trial of tumor treating fields (TTFields) therapy in combination with pemetrexed for advanced non-small cell lung cancer. Lung Cancer 81, 445–450 (2013)

    Article  Google Scholar 

  • S. Raghavan, M.R. Ward, K.R. Rowley, R.M. Wold, S. Takayama, R.J. Buckanovich, G. Mehta, Formation of stable small cell number three-dimensional ovarian cancer spheroids using hanging drop arrays for preclinical drug sensitivity assays. Gynecol. Oncol. 138, 181–189 (2015)

    Article  Google Scholar 

  • A. Seyfoori, E. Samiei, N. Jalili, B. Godau, M. Rahmanian, L. Farahmand, K. Majidzadeh-A, M. Akbari, Self-filling microwell arrays (SFMAs) for tumor spheroid formation. Lab Chip 18, 3516–3528 (2018)

    Article  Google Scholar 

  • H.B. Stone, C.N. Coleman, M.S. Anscher, W.H. McBride, Effects of radiation on normal tissue: Consequences and mechanisms. Lancet Oncol. 4, 529–536 (2003)

    Article  Google Scholar 

  • R. Stupp, S. Taillbert, A.A. Kanner, S. Kesari, D.M. Steinberg, et al., Maintenance therapy with tumor-treating fields plus temozolomide vs temozolomide alone for glioblastoma. JAMA 314, 2535–2543 (2015)

    Article  Google Scholar 

  • R. Stupp, S. Taillibert, A.A. Kanner, W. Read, D.M. Steinberg, et al., Effect of tumor-treating fields plus maintenance temozolomide vs maintenance temozolomide alone on survival in patients with glioblastoma. JAMA 318, 2306–2316 (2017)

    Article  Google Scholar 

  • R.M. Sutherland, Cell and environment interactions in tumor microregions: The multicell spheroid model. Science 240(4849), 177–184 (1988)

    Article  Google Scholar 

  • O. Tacar, P. Sriamornask, C.R. Dass, Doxorubicin: An update on anticancer molecular action, toxicity and novel drug delivery systems. J. Pharm. Pharmacol. 65, 157–170 (2013)

    Article  Google Scholar 

  • Y.C. Tung, A.Y. Hsiao, S.G. Allen, Y.S. Torisawa, M. Ho, S. Takayama, High-throughput 3D spheroid culture and drug testing using a 384 hanging drop array. Analyst 136, 473–478 (2011)

    Article  Google Scholar 

  • J.L. Villano, L.E. Williams, K.S. Watson, N. Ignatius, M.T. Wilson, et al., Delayed response and survival from NovoTTF-100A in recurrent GBM. Med. Oncol. 30, 338 (2013)

    Article  Google Scholar 

  • J. Vymazal, E.T. Wong, Response patterns of recurrent glioblastomas treated with tumor-treating fields. Semin. Oncol. 41, S14–S24 (2014)

    Article  Google Scholar 

  • E.T. Wong, E. Lok, K.D. Swanson, S. Gautam, H.H. Engelhard, et al., Response assessment of NovoTTF-100A versus best physician’s choice chemotherapy in recurrent glioblastoma. Cancer Med 3, 592–602 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Chang Gung Memorial Hospital, Linkou, Taiwan (project no. CMRPD2H0022 and BMRPC05).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kin Fong Lei or Ming-Yih Lee.

Ethics declarations

Conflict of interest

The authors have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 928 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, K.F., Ji, WW., Goh, A. et al. Investigation of uniform sized multicellular spheroids raised by microwell arrays after the combined treatment of electric field and anti-cancer drug. Biomed Microdevices 21, 94 (2019). https://doi.org/10.1007/s10544-019-0442-5

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10544-019-0442-5

Keywords

Navigation