Simultaneous and high sensitive detection of Salmonella typhi and Salmonella paratyphi a in human clinical blood samples using an affordable and portable device

Abstract

Enteric fever is one of the leading causes of infection and subsequent fatality (greater than 1.8 million) (WHO 2018), especially in the developing countries due to contaminated water and food inter twinned with unhygienic practices. Clinical gold standard technique of culture-based method followed by biochemical tests demand 72+ hours for diagnosis while newly developed techniques (like PCR, RT-PCR, DNA microarray etc.) suffer from high limit of detection or involve high-cost infrastructure or both. In this work, a quick and highly specific method, SMOL was established for simultaneous detection of Salmonella paratyphi A and Salmonella typhi in clinical blood samples. SMOL consists of (i) pre-concentration of S. typhi and S. paratyphi A cells using magnetic nanoparticles followed by (ii) cell lysis and DNA extraction (iii) amplification of select nucleic acids by LAMP technique and (iv) detection of amplified nucleic acids using an affordable portable device (costs less than $70). To identify the viability of target cells at lower concentrations, the samples were processed at two different time periods of t = 0 and t = 4 h. Primers specific for the SPA2539 gene in S. paratyphi A and STY2879 gene in S. typhi were used for LAMP. Within 6 h SMOL was able to detect positive and negative samples from 55 human clinical blood culture samples and detect the viability of the cells. The results were concordant with culture and biochemical tests as well as by qPCR. Statistical power analysis yielded 100%. SMOL results were concordant with culture and biochemical tests as well as by qPCR. The sensitive and affordable system SMOL will be effective for poor resource settings.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. J. Abdullah, N. Saffie, F.A.R. Sjasri, A. Husin, Z. Abdul-Rahman, A. Ismail, et al., Rapid detection of Salmonella Typhi by loop-mediated isothermal amplification (LAMP) method. Braz. J. Microbiol. 45(4), 1385–1391 (2014)

    Article  Google Scholar 

  2. D. Acheson, E.L. Hohmann, Nontyphoidal Salmonellosis. Clin. Infect. Dis. 32(2), 263–269 (2001). https://doi.org/10.1086/318457

    Article  Google Scholar 

  3. S.A. Besuschio, M. Llano Murcia, A.F. Benatar, S. Monnerat, I. Cruz Mata, A. Picado de Puig, et al., Analytical sensitivity and specificity of a loop-mediated isothermal amplification (LAMP) kit prototype for detection of Trypanosoma cruzi DNA in human blood samples. PLoS Negl. Trop. Dis. 11(7) (2017). https://doi.org/10.1371/journal.pntd.0005779

  4. C. Carter, K. Akrami, D. Hall, D. Smith, E. Aronoff-Spencer, Lyophilized visually readable loop-mediated isothermal reverse transcriptase nucleic acid amplification test for detection Ebola Zaire RNA. J. Virol. Methods 244, 32–38 (2017)

    Article  Google Scholar 

  5. CLSI document M47-A, Principles and procedures for blood cultures; approved guideline. Clinical and Laboratory Standards Institute. (2007)

  6. B.A. Connor, E. Schwartz, Typhoid and paratyphoid fever in travellers. Lancet Infect. Dis. 5(10), 623–628 (2005)

    Article  Google Scholar 

  7. P.B. Crichton, Enterobacteriaceae: Escherichia, Klebsiella, proteus and other genera. Mackie and McCartney Practical Medical Microbiology 14, 361–384 (1996)

    Google Scholar 

  8. J.A. Crump, E.D. Mintz, Global trends in typhoid and paratyphoid fever. Clinical Infectious Diseases : An Official Publication of the Infectious Diseases Society of America 50(2), 241–246 (2010). https://doi.org/10.1086/649541

    Article  Google Scholar 

  9. J.A. Crump, S.P. Luby, E.D. Mintz, The global burden of typhoid fever. Bull. World Health Organ. 82(5), 346–353 (2004). https://doi.org/10.1590/S0042-96862004000500008

    Article  Google Scholar 

  10. S. Dahiya, P. Sharma, B. Kumari, S. Pandey, R. Malik, N. Manral, et al., Characterisation of antimicrobial resistance in Salmonellae during 2014–2015 from four centres across India: An ICMR antimicrobial resistance surveillance network report. Indian J. Med. Microbiol. 35(1), 61–68 (2017)

    Article  Google Scholar 

  11. S. Dutta, S. Das, U. Mitra, P. Jain, I. Roy, S.S. Ganguly, et al., Antimicrobial resistance, virulence profiles and molecular subtypes of Salmonella enterica serovars Typhi and Paratyphi A blood isolates from Kolkata, India during 2009-2013. PLoS ONE 9(8) (2014). https://doi.org/10.1371/journal.pone.0101347

  12. E. Eriksson, A. Aspan, Comparison of culture, ELISA and PCR techniques for salmonella detection in faecal samples for cattle, pig and poultry. BMC Vet. Res. 3 (2007). https://doi.org/10.1186/1746-6148-3-21

  13. A. Eyigor, K.T. Carli, Rapid detection of Salmonella from poultry by real-time polymerase chain reaction with fluorescent hybridization probes. Avian Dis. 47(2), 380–386 (2003)

    Article  Google Scholar 

  14. L. Fabre, S. Le Hello, C. Roux, S. Issenhuth-Jeanjean, F.-X. Weill, CRISPR is an optimal target for the design of specific PCR assays for Salmonella enterica serotypes Typhi and Paratyphi A. PLoS Negl. Trop. Dis. 8(1), 1–11 (2014). https://doi.org/10.1371/journal.pntd.0002671

    Article  Google Scholar 

  15. F. Fan, P. Du, B. Kan, M. Yan, The development and evaluation of a loop-mediated isothermal amplification method for the rapid detection of Salmonella enterica serovar Typhi. PLoS ONE 10(4) (2015). https://doi.org/10.1371/journal.pone.0124507

  16. M. Fangtham, H. Wilde, Emergence of Salmonella Paratyphi A as a major cause of enteric fever: need for early detection, preventive measures, and effective vaccines. Journal of Travel Medicine 15(5), 344–350 (2008)

    Article  Google Scholar 

  17. N.A. Feasey, K. Gaskell, V. Wong, C. Msefula, G. Selemani, S. Kumwenda, et al., Rapid emergence of multidrug resistant, H58-lineage Salmonella Typhi in Blantyre, Malawi. PLoS Negl. Trop. Dis. 9(4), e0003748 (2015). https://doi.org/10.1371/journal.pntd.0003748

    Article  Google Scholar 

  18. V. Gupta, J. Kaur, J. Chander, et al., An increase in enteric fever cases due to Salmonella Paratyphi A in & around Chandigarh. Indian J. Med. Res. 129(1), 95–98 (2009)

    Google Scholar 

  19. K. Hajian-Tilaki, Sample size estimation in diagnostic test studies of biomedical informatics. J. Biomed. Inform. 48, 193–204 (2014). https://doi.org/10.1016/j.jbi.2014.02.013

    Article  Google Scholar 

  20. A. Kaur, R. Das, M.R. Nigam, R. Elangovan, D. Pandya, S. Jha, D. Kalyanasundaram, Rapid detection device for Salmonella typhi in milk, juice, water and calf serum. Indian J. Microbiol. 58(3), 381–392 (2018a). https://doi.org/10.1007/s12088-018-0730-4

    Article  Google Scholar 

  21. A. Kaur, A. Kapil, R. Elangovan, S. Jha, D. Kalyanasundaram, Highly-sensitive detection of Salmonella typhi in clinical blood samples by magnetic nanoparticle-based enrichment and in-situ measurement of isothermal amplification of nucleic acids. PLoS One 13(3) (2018b). https://doi.org/10.1371/journal.pone.0194817

  22. Y.T. Kim, Y. Chen, J.Y. Choi, W.-J. Kim, H.-M. Dae, J. Jung, T.S. Seo, Integrated microdevice of reverse transcription-polymerase chain reaction with colorimetric immunochromatographic detection for rapid gene expression analysis of influenza A H1N1 virus. Biosens. Bioelectron. 33(1), 88–94 (2012)

    Article  Google Scholar 

  23. J.-S. Lee, V.V. Mogasale, V. Mogasale, K. Lee, Geographical distribution of typhoid risk factors in low and middle income countries. BMC Infect. Dis. 16(1), 732 (2016). https://doi.org/10.1186/s12879-016-2074-1

    Article  Google Scholar 

  24. T.R. Liu, K. Liljebjelke, E. Bartlett, C. Hofacre, S. Sanchez, J.J. Maurer, Application of nested polymerase chain reaction to detection of Salmonella in poultry environment. J. Food Prot. 65(8), 1227–1232 (2002). https://doi.org/10.4315/0362-028X-65.8.1227

    Article  Google Scholar 

  25. C. Manjunatha, S. Sharma, D. Kulshreshtha, S. Gupta, K. Singh, S.C. Bhardwaj, R. Aggarwal, Rapid detection of Puccinia triticina causing leaf rust of wheat by PCR and loop mediated isothermal amplification. PLoS ONE 13(4) (2018)

  26. W. Mokhtari, S. Nsaibia, D. Majouri, A. Ben Hassen, A. Gharbi, M. Aouni, Detection and characterization of Shigella species isolated from food and human stool samples in Nabeul, Tunisia, by molecular methods and culture techniques. J. Appl. Microbiol. 113(1), 209–222 (2012). https://doi.org/10.1111/j.1365-2672.2012.05324.x

    Article  Google Scholar 

  27. M. Mukhtar, S.S. Ali, S.A. Boshara, A. Albertini, S. Monnerat, P. Bessell, et al., Sensitive and less invasive confirmatory diagnosis of visceral leishmaniasis in Sudan using loop-mediated isothermal amplification (LAMP). PLoS Negl. Trop. Dis. 12(2) (2018). https://doi.org/10.1371/journal.pntd.0006264

  28. K. Nagamine, T. Hase, T. Notomi, Accelerated reaction by loop-mediated isothermal amplification using loop primers. Mol. Cell. Probes 16, 223–229 (2002). https://doi.org/10.1006/mcpr.2002.0415

    Article  Google Scholar 

  29. T. Notomi, H. Okayama, H. Masubuchi, T. Yonekawa, K. Watanabe, N. Amino, T. Hase, Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 28(12), E63 (2000). https://doi.org/10.1093/nar/28.12.e63

    Article  Google Scholar 

  30. C.R. Phaneuf, B. Mangadu, H.M. Tran, Y.K. Light, A. Sinha, F.W. Charbonier, et al., Integrated LAMP and immunoassay platform for diarrheal disease detection. Biosens. Bioelectron. 120, 93–101 (2018)

    Article  Google Scholar 

  31. P. Phumkhachorn, P. Rattanachaikunsopon, Detection of viable Salmonella Typhi by reverse transcription-multiplex polymerase chain reaction. Emirates Journal of Food and Agriculture 29(4), 1 (2017). https://doi.org/10.9755/ejfa.2016-12-1867

    Article  Google Scholar 

  32. N.-E. Saffie, J. Abdullah, Z.A. Rahman, A. Hussin, A. Ismail, M. Mohamed, Establishment of an in-house loop-mediated isothermal amplification (LAMP) for a rapid detection of Salmonella Typhi and Salmonella Paratyphi A at low-resource settings. J. Food Saf. 34(1), 69–75 (2014)

    Article  Google Scholar 

  33. E. Sheikhzadeh, M. CHamsaz, A.P.F. Turner, E.W.H. Jager, V. Beni, Label-free impedimetric biosensor for Salmonella Typhimurium detection based on poly [pyrrole-co-3-carboxyl-pyrrole] copolymer supported aptamer. Biosens. Bioelectron. 80, 194–200 (2016)

    Article  Google Scholar 

  34. B. Shu, C. Zhang, D. Xing, A sample-to-answer, real-time convective polymerase chain reaction system for point-of-care diagnostics. Biosens. Bioelectron. 97, 360–368 (2017)

    Article  Google Scholar 

  35. S. Singh, M. Upadhyay, J. Sharma, S. Gupta, P. Vivekanandan, R. Elangovan, A portable immunomagnetic cell capture system to accelerate culture diagnosis of bacterial infections. Analyst 141(11), 3358–3366 (2016). https://doi.org/10.1039/C6AN00291A

    Article  Google Scholar 

  36. Sood, S., Kapil, A., Dash, N., Das, B. K., Goel, V., & Seth, P. Paratyphoid fever in India: An emerging problem [3]. Emerg. Infect. Dis. https://doi.org/10.3201/eid0503.990329 (1999)

  37. M.C. Soria, M.A. Soria, D.J. Bueno, H.R. Terzolo, Comparison of 3 culture methods and PCR assays for Salmonella gallinarum and Salmonella pullorum detection in poultry feed. Poult. Sci. 92(6), 1505–1515 (2013). https://doi.org/10.3382/ps.2012-02926

    Article  Google Scholar 

  38. S.M. Tennant, D. Toema, F. Qamar, N. Iqbal, M.A. Boyd, J.M. Marshall, et al., Detection of typhoidal and paratyphoidal salmonella in blood by real-time polymerase chain reaction. Clin. Infect. Dis. 61, S241–S250 (2015). https://doi.org/10.1093/cid/civ726

    Article  Google Scholar 

  39. Wan, L., Gao, J., Chen, T., Dong, C., Li, H., Wen, Y. Z., … Martins, R. P. LampPort: a handheld digital microfluidic device for loop-mediated isothermal amplification (LAMP). Biomed. Microdevices https://doi.org/10.1007/s10544-018-0354-9 (2019)

  40. Y.-P. Wong, S. Othman, Y.-L. Lau, S. Radu, H.-Y. Chee, Loop-mediated isothermal amplification (LAMP): a versatile technique for detection of micro-organisms. J. Appl. Microbiol. 124(3), 626–643 (2018). https://doi.org/10.1111/jam.13647

    Article  Google Scholar 

  41. C.W. Woods, D.R. Murdoch, M.D. Zimmerman, W.A. Glover, B. Basnyat, L. Wolf, et al., Emergence of Salmonella enterica serotype Paratyphi A as a major cause of enteric fever in Kathmandu, Nepal. Trans. R. Soc. Trop. Med. Hyg. 100(11), 1063–1067 (2006)

    Article  Google Scholar 

  42. Y. Zhao, F. Chen, Q. Li, L. Wang, C. Fan, Isothermal Amplification of Nucleic Acids. Chem. Rev. 115(22), 12491–12545 (2015). https://doi.org/10.1021/acs.chemrev.5b00428

    Article  Google Scholar 

  43. L. Zhou, A.J. Pollard, A fast and highly sensitive blood culture PCR method for clinical detection of Salmonella enterica serovar Typhi. Ann. Clin. Microbiol. Antimicrob. 9(1), 14 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support from the Department of Science and Technology (YSS/2014/000880, and IDP/MED/05/2014), Indo-German Science and Technology Centre (IGSTC/Call 2014/Sound4All/24/2015-16), Naval research board (NRB/4003/PG/359), BIRAC, Department of Biotechnology (BIRAC/BT/AIR0275/PACE-12/17).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Dinesh Kalyanasundaram.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1929 kb)

ESM 2

(MOV 39702 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kaur, A., Ruhela, A., Sharma, P. et al. Simultaneous and high sensitive detection of Salmonella typhi and Salmonella paratyphi a in human clinical blood samples using an affordable and portable device. Biomed Microdevices 21, 95 (2019). https://doi.org/10.1007/s10544-019-0441-6

Download citation

Keywords

  • Salmonella typhi
  • Salmonella paratyphi A
  • LAMP
  • Diagnosis
  • Cross-reactivity
  • Device