Microfluidic devices with gold thin film channels for chemical and biomedical applications: a review

Abstract

Microfluidic systems (MFS) provide a range of advantages in biomedical applications, including improved controllability of material characteristics and lower consumption of reagents, energy, time and money. Fabrication of MFS employs various materials, such as glass, silicon, ceramics, paper, and metals such as gold, copper, aluminum, chromium and titanium. In this review, gold thin film microfluidic channels (GTFMFC) are discussed with reference to fabrication methods and their diverse use in chemical and biomedical applications. The advantages of gold thin films (GTF) include flexibility, ease of manufacture, adhesion to polymer surfaces, chemical stability, good electrical conductivity, surface plasmon resonance effects, ability to be chemically functionalized, etc. Various electroactuators and electroanalytical devices can incorporate GTF. GTF-based MFS have been used in environmental monitoring, assays of biomarkers, immunoassays, cell culture studies and pathogen identification.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Francesko A, Cardoso V, Lanceros Méndez S. Lab-on-a-chip technology and microfluidics. Microfluidics for pharmaceutical applications: From nano/micro systems fabrication to controlled drug delivery: Elsevier; 2019. p. 3–36

  2. Bruus H. Theoretical microfluidics. 3rd ed. Denmark: Oxford university press Oxford; 2008

  3. Y. Temiz, R.D. Lovchik, G.V. Kaigala, E. Delamarche, Lab-on-a-chip devices: How to close and plug the lab? Microelectron. Eng. 132, 156–175 (2015)

    Google Scholar 

  4. Bruus H. Theor. Microfluid. Third ed. Denmark: Oxford university press Oxford; 2008

  5. B. Nasseri, N. Soleimani, N. Rabiee, A. Kalbasi, M. Karimi, M.R. Hamblin, Point-of-care microfluidic devices for pathogen detection. Biosens. Bioelectron. 117, 112–128 (2018)

    Google Scholar 

  6. F. Farjadian, M. Moghoofei, S. Mirkiani, A. Ghasemi, N. Rabiee, S. Hadifar, et al., Bacterial components as naturally inspired nano-carriers for drug/gene delivery and immunization: Set the bugs to work? Biotechnol. Adv. 36(4), 968–985 (2018)

    Google Scholar 

  7. N. Nesakumar, S. Kesavan, C. Li, S. Alwarappan, Microfluidic electrochemical devices for biosensing. J Anal Test. 3(1), 3–18 (2019)

    Google Scholar 

  8. J.W. Judy, Microelectromechanical systems (mems): Fabrication, design and applications. Smart Mater. Struct. 10(6), 1115 (2001)

    Google Scholar 

  9. J. Xu, Z. Lei, J. Guo, J. Huang, W. Wang, U. Reibetanz, et al., Trapping and driving individual charged micro-particles in fluid with an electrostatic device. Nano-Micro Lett. 8(3), 270–281 (2016)

    Google Scholar 

  10. Y. Lu, M. Zhang, H. Zhang, J. Huang, Z. Wang, Z. Yun, et al., On-chip acoustic mixer integration of electro-microfluidics towards in-situ and efficient mixing in droplets. MicrofluidNanofluid. 22(12), 146 (2018)

    Google Scholar 

  11. F. Ahmadi, K. Samlali, P. Vo, S. Shih, An integrated droplet-digital microfluidic system for on-demand droplet creation, mixing, incubation, and sorting. Lab Chip 19(3), 524–535 (2019)

    Google Scholar 

  12. S. Zulkepli, N. Hamid, V. Shukla, Droplet velocity measurement based on dielectric layer thickness variation using digital microfluidic devices. Biosensors. 8(2), 45 (2018)

    Google Scholar 

  13. E. Elton, Y. Tibrewala, W. Ristenpart, Statistical analysis of droplet charge acquired during contact with electrodes in strong electric fields. Langmuir. 35(11), 3937–3948 (2019)

    Google Scholar 

  14. R.R. Dos Santos, A. Seabra, Design techniques for microfluidic devices implementation applicable to chemical analysis systems: Theoretical and experimental analysis of microcomponents. Process analysis, design, and intensification in microfluidics and chemical engineering. Brazil: IGI Global, 195–222 (2019)

  15. S.F. Parsa, A. Vafajoo, A. Rostami, R. Salarian, M. Rabiee, N. Rabiee, et al., Early diagnosis of disease using microbead array technology: A review. Anal. Chim. Acta 1032, 1–17 (2018)

    Google Scholar 

  16. A. Ghasemi, N. Rabiee, S. Ahmadi, S. Hashemzadeh, F. Lolasi, M. Bozorgomid, et al., Optical assays based on colloidal inorganic nanoparticles. Analyst. 143(14), 3249–3283 (2018)

    Google Scholar 

  17. W.M. Zhang, H. Yan, Z.K. Peng, G. Meng, Electrostatic pull-in instability in mems/nems: A review. Sensor Actuat A-Phys. 214, 187–218 (2014)

    Google Scholar 

  18. G. Luka, A. Ahmadi, H. Najjaran, E. Alocilja, M. DeRosa, K. Wolthers, et al., Microfluidics integrated biosensors: A leading technology towards lab-on-a-chip and sensing applications. Sensors. 15(12), 30011–30031 (2015)

    Google Scholar 

  19. A. Vafajoo, A. Rostami, S.F. Parsa, R. Salarian, N. Rabiee, G. Rabiee, et al., Multiplexed microarrays based on optically encoded microbeads. Biomed. Microdevices 20(3), 66 (2018)

    Google Scholar 

  20. Rabiee N, Safarkhani M, Rabiee M. Ultra-sensitive electrochemical on-line determination of Clarithromycin based on Poly (L-Aspartic acid)/graphite oxide/pristine graphene/glassy carbon electrode. Asian Journal of Nanosciences and Materials. 2018;1(2. pp. 52–103):63–73

  21. R. De Campos, D. Rackus, R. Shih, C. Zhao, X. Liu, A. Wheeler, “Plug-n-play” sensing with digital microfluidics. Analyt chem. 91(3), 2506–2515 (2019)

    Google Scholar 

  22. F. Bunge, S. van den Driesche, M. Vellekoop, Symmetric surficial phaseguides: A passive technology to generate wall-less channels by two-dimensional guiding elements. Microfluid. Nanofluid. 20(7), 95 (2016)

    Google Scholar 

  23. D.P. Parekh, C. Ladd, L. Panich, K. Moussa, M.D. Dickey, 3D printing of liquid metals as fugitive inks for fabrication of 3D microfluidic channels. Lab Chip 16(10), 1812–1820 (2016)

    Google Scholar 

  24. L. Zhang, W. Wang, X.-J. Ju, R. Xie, Z. Liu, L.Y. Chu, Fabrication of glass-based microfluidic devices with dry film photoresists as pattern transfer masks for wet etching. RSC Adv. 5(8), 5638–5646 (2015)

    Google Scholar 

  25. M.M. Torunbalci, S.E. Alper, T. Akin, Wafer level hermetic sealing of MEMS devices with vertical feedthroughs using anodic bonding. Sensor Actuat A-Phys. 224, 169–176 (2015)

    Google Scholar 

  26. P. Mao, J. Han, Fabrication and characterization of 20 nm planar nanofluidic channels by glass–glass and glass–silicon bonding. Lab Chip 5(8), 837–844 (2005)

    Google Scholar 

  27. T. Naito, M. Nakamura, N. Kaji, T. Kubo, Y. Baba, K. Otsuka, Three-dimensional fabrication for microfluidics by conventional techniques and equipment used in mass production. Micromachines-Basel. 7(5), 82 (2016)

    Google Scholar 

  28. Karimi M, Mansouri MR, Rabiee N, Hamblin MR. Advances in Nanomaterials for Drug Delivery: Polymeric, nanocarbon, and bio-inspired (San Rafael, CA: Morgan & Claypool). 2018

  29. S. Hajebi, N. Rabiee, M. Bagherzadeh, S. Ahmadi, M. Rabiee, H. Roghani-Mamaqani, et al., Stimulus-responsive polymeric nanogels as smart drug delivery systems. Acta Biomater. 92, 1–18 (2019)

    Google Scholar 

  30. M. Zhang, J. Wu, L. Wang, K. Xiao, W. Wen, A simple method for fabricating multi-layer PDMS structures for 3D microfluidic chips. Lab Chip 10(9), 1199–1203 (2010)

    Google Scholar 

  31. X. Hou, Y.S. Zhang, G. Trujillo-de Santiago, M.M. Alvarez, J. Ribas, S.J. Jonas, et al., Interplay between materials and microfluidics. Nat Rev Mater. 2(5), 17016 (2017)

    Google Scholar 

  32. C. Owens, A. Hart, High-precision modular microfluidics by micromilling of interlocking injection-molded blocks. Lab Chip 18(6), 890–901 (2018)

    Google Scholar 

  33. A. Mehboudi, J. Yeom, Experimental and theoretical investigation of a low-Reynolds-number flow through deformable shallow microchannels with ultra-low height-to-width aspect ratios. Microfluid. Nanofluid. 23(5), 66 (2019)

    Google Scholar 

  34. Nguyen N-T, Wereley ST, Shaegh SAM. Fundamentals and applications of microfluidics: Artech house; USA, 2019

  35. D. Stoecklein, D. Di Carlo, Nonlinear microfluidics. Anal. Chem. 91(1), 296–314 (2019)

    Google Scholar 

  36. H. Amini, W. Lee, D. Di Carlo, Inertial microfluidic physics. Lab Chip 14(15), 2739–2761 (2014)

    Google Scholar 

  37. Rabiee N, Kiani M, Bagherzadeh M, Rabiee M, Ahmadi S. Nanoparticle (NP)-Based Delivery Vehicles (San Rafael, CA: Morgan & Claypool). 2019a

  38. Rabiee N, Rabiee M, Bagherzadeh M, Hamblin MR. Stimuli-Responsive Polymers: Nano-Dimension (San Rafael, CA: Morgan & Claypool). 2019b

  39. Y. Wang, H. Cheng, K. Chang, J. Shiue, J. Wang, Y. Wang, et al., A particle-based microfluidic molecular separation integrating surface-enhanced Raman scattering sensing for purine derivatives analysis. Microfluid. Nanofluid. 23(4), 48 (2019)

    Google Scholar 

  40. S. Yan, S. Tan, Y. Li, S. Tang, A. Teo, J. Zhang, et al., A portable, hand-powered microfluidic device for sorting of biological particles. Microfluid. Nanofluid. 22(1), 8 (2018)

    Google Scholar 

  41. G.M. Whitesides, The origins and the future of microfluidics. Nature. 442, 368 (2006)

    Google Scholar 

  42. A. Grünberger, W. Wiechert, D. Kohlheyer, Single-cell microfluidics: Opportunity for bioprocess development. Curr Opin Biotech. 29, 15–23 (2014)

    Google Scholar 

  43. Rabiee M, Rabiee N, Salarian R, Rabiee G. Introduction to Nanomaterials in Medicine (San Rafael, CA: Morgan & Claypool). 2019c

  44. Rabiee M, Rabiee N, Salarian R, Rabiee G. Nanomaterials: concepts. Introduction to Nanomaterials in Medicine. (San Rafael, CA: Morgan & Claypool). 2019d

  45. R. Rusconi, M. Garren, R. Stocker, Microfluidics expanding the frontiers of microbial ecology. Annu. Rev. Biophys. 43, 65–91 (2014)

    Google Scholar 

  46. M.E. Piyasena, S.W. Graves, The intersection of flow cytometry with microfluidics and microfabrication. Lab Chip 14(6), 1044–1059 (2014)

    Google Scholar 

  47. R. Riahi, A. Tamayol, S. Shaegh, A. Ghaemmaghami, M. Dokmeci, A. Khademhosseini, Microfluidics for advanced drug delivery systems. Curr Opin Chem Eng. 7, 101–112 (2015)

    Google Scholar 

  48. Rabiee N, Kiani M, Bagherzadeh M, Rabiee M, Ahmadi S. Smart nanostructures. (San Rafael, CA: Morgan & Claypool). 2019e

  49. Rabiee N, Kiani M, Bagherzadeh M, Rabiee M, Ahmadi S. An introduction to drug/gene delivery systems. (San Rafael, CA: Morgan & Claypool). 2019f

  50. S. Maghsoudi, B.T. Shahraki, N. Rabiee, R. Afshari, Y. Fatahi, R. Dinarvand, et al., Recent advancements in aptamer-bioconjugates: Sharpening stones for breast and prostate cancers targeting. Journal of Drug Delivery Science and Technology. 101146 (2019)

  51. M.E. Warkiani, B.L. Khoo, L. Wu, A.K.P. Tay, A.A.S. Bhagat, J. Han, et al., Ultra-fast, label-free isolation of circulating tumor cells from blood using spiral microfluidics. Nat. Protoc. 11(1), 134 (2016)

    Google Scholar 

  52. L. Malic, D. Brassard, T. Veres, M. Tabrizian, Integration and detection of biochemical assays in digital microfluidic LOC devices. Lab Chip 10(4), 418–431 (2010)

    Google Scholar 

  53. W.D. Childers, P. Crivelli, D. Tyvoll, J.A. Feinn, D.A. Sexton, L.P. Hewlett Packard Development Co, Microfluidic system utilizing thin-film layers to route fluid. U.S. Patent 7, 932,098 (2011)

    Google Scholar 

  54. Schafer H, Chemnitz S, Schumacher S, Koziy V, Fischer A, Meixner AJ, et al., editors. Microfluidics meets thin-film electronics: a new approach towards an integrated intelligent lab-on-a-chip. Smart Sensors, Actuators, and MEMS; 2003: International Society for Optics and Photonics

  55. E. Samiei, M. Tabrizian, M. Hoorfar, A review of digital microfluidics as portable platforms for lab-on a-chip applications. Lab Chip 16(13), 2376–2396 (2016)

    Google Scholar 

  56. Van den Berg, A. and Segerink, L. eds., 2014. Microfluidics for medical applications. Royal Society of Chemistry

  57. E.K. Sackmann, A.L. Fulton, D.J. Beebe, The present and future role of microfluidics in biomedical research. Nature. 507(7491), 181 (2014)

    Google Scholar 

  58. K. Lai, Y. Yang, C. Lee, An intelligent digital microfluidic processor for biomedical detection. J Signal Process Sys. 78(1), 85–93 (2014)

    Google Scholar 

  59. Zhang S. Biological and Biomedical Coatings Handbook: Applications: CRC Press; 2016

  60. G. Pease, A.L. Ghozeil, J.S. Dunfield, W.D. Childers, D. Tyvoll, D.A. Sexton, P. Crivelli, L.P. Hewlett Packard Development Co, Microfluidic device with thin-film electronic devices. U.S. Patent 7, 338,637 (2008)

    Google Scholar 

  61. C. Daikuzono, C. Dantas, D. Volpati, C. Constantino, M. Piazzetta, A. Gobbi, et al., Microfluidic electronic tongue. Sensor Actuat B-Chem. 207, 1129–1135 (2015)

    Google Scholar 

  62. P. Miller, M. Moorman, R. Boehm, S. Wolfley, V. Chavez, J. Baca, et al., Fabrication of hollow metal microneedle arrays using a molding and electroplating method. MRS Adv. 4(24), 1417–1426 (2019)

    Google Scholar 

  63. Markovic, T., Bao, J., Ocket, I., Kil, D., Brancato, L., Puers, R. and Nauwelaers, B., 2017. Uniplanar microwave heater for digital microfluidics. In 2017 First IEEE MTT-S International Microwave Bio Conference (IMBIOC) (pp. 1–4). IEEE

  64. S. Kalsi, M. Valiadi, M.-N. Tsaloglou, L. Parry-Jones, A. Jacobs, R. Watson, et al., Rapid and sensitive detection of antibiotic resistance on a programmable digital microfluidic platform. Lab Chip 15(14), 3065–3075 (2015)

    Google Scholar 

  65. F. Chiu, T. Pan, T. Kundu, C. Shih, Thin film applications in advanced electron devices. Adv. Mater. Sci. Eng. 2014 (2014)

  66. P. Heremans, A. Tripathi, A. de Jamblinne de Meux, E. Smits, B. Hou, G. Pourtois, et al., Mechanical and electronic properties of thin-film transistors on plastic, and their integration in flexible electronic applications. Adv. Mater. 28(22), 4266–4282 (2016)

    Google Scholar 

  67. Rao M, Shekhawat M, editors. A brief survey on basic properties of thin films for device application. Int J Mod Phys; 2013: World Scientific

  68. M. Nordström, A. Johansson, E. Noguerón, B. Clausen, M. Calleja, A. Boisen, Investigation of the bond strength between the photo-sensitive polymer SU-8 and gold. Microelectron. Eng. 78, 152–157 (2005)

    Google Scholar 

  69. B. Moazzez, S. O'Brien, S. Merschrod, Improved adhesion of gold thin films evaporated on polymer resin: Applications for sensing surfaces and MEMS. Sensors. 13(6), 7021–7032 (2013)

    Google Scholar 

  70. M. Abdelgawad, A. Wheeler, Low-cost, rapid-prototyping of digital microfluidics devices. Microfluid. Nanofluid. 4(4), 349 (2008)

    Google Scholar 

  71. M. Makela, T. Hatanpää, K. Mizohata, J. Raisanen, M. Ritala, M. Leskelä, Thermal atomic layer deposition of continuous and highly conducting gold thin films. Chem. Mater. 29(14), 6130–6136 (2017)

    Google Scholar 

  72. J. Casanova Morenoa, To J, C. Tony Yang, R. Turner, D. Bizzotto, K. Cheung, Fabricating devices with improved adhesion between pdms and gold-patterned glass. Sensor Actuat B-Chem 246, 904–909 (2017)

    Google Scholar 

  73. I. Stabrawa, D. Banaś, K. Dworecki, A. Kubala Kukuś, J. Braziewicz, U. Majewska, et al., Investigation of gold nanolayer properties using X-ray reflectometry and spectroscopic ellipsometry methods. Acta Phys. Pol. A 129(2), 233–236 (2016)

    Google Scholar 

  74. D.I. Yakubovsky, A.V. Arsenin, Y.V. Stebunov, D.Y. Fedyanin, V.S. Volkov, Optical constants and structural properties of thin gold films. Opt. Express 25(21), 25574–25587 (2017)

    Google Scholar 

  75. J.H. Jou, L.J. Chen, Relaxation modulus and thermal expansion coefficient of polyimide films coated on substrates. Appl. Phys. Lett. 59(1), 46–47 (1991)

    Google Scholar 

  76. J.-H. Jou, C.-N. Liao, K.-W. Jou, A method for the determination of gold thin film's mechanical properties. Thin Solid Films 238(1), 70–72 (1994)

    Google Scholar 

  77. A. Goswami, Thin Film Fundamentals (New Delhi, New Age International, 1996)

    Google Scholar 

  78. B. Peeni, M. Lee, A. Hawkins, A. Woolley, Sacrificial layer microfluidic device fabrication methods. Electrophoresis. 27(24), 4888–4895 (2006)

    Google Scholar 

  79. M. Datta, Applications of electrochemical microfabrication: An introduction. IBM J. Res. Dev. 42(5), 563–566 (1998)

    Google Scholar 

  80. J. Tien, A. Terfort, G. Whitesides, Microfabrication through electrostatic self-assembly. Langmuir. 13(20), 5349–5355 (1997)

    Google Scholar 

  81. C. Friedrich, P. Coane, M. Vasile, Micromilling development and applications for microfabrication. Microelectron. Eng. 35(1–4), 367–372 (1997)

    Google Scholar 

  82. P. Juskova, F. Foret, Application of thin metal film elements in bioanalysis. J. Sep. Sci. 34(20), 2779–2789 (2011)

    Google Scholar 

  83. Y. Deng, V. Tripkovic, J. Rossmeisl, M. Arenz, Oxygen reduction reaction on Pt overlayers deposited onto a gold film: Ligand, strain, and ensemble effect. ACS Catal. 6(2), 671–676 (2015)

    Google Scholar 

  84. L. Li, H. Yin, A. Mason, Epoxy chip-in-carrier integration and screen-printed metalization for multichannel microfluidic lab-on-CMOS microsystems. IEEE T Biomed Circ S. 12(2), 416–425 (2018)

    Google Scholar 

  85. Mohammadzadeh A, Robichaud A, Selvaganapathy P. Rapid and inexpensive method for fabrication and integration of electrodes in microfluidic devices. J Microelectromech S. 2019

  86. H. Zhao, Y. Xu, C. Wang, R. Wang, S. Xiang, L. Chen, Design and fabrication of a microfluidic SERS chip with integrated ag film@ nanoAu. RSC Adv. 6(17), 14105–14111 (2016)

    Google Scholar 

  87. Folch A. Introduction to bioMEMS. 1st ed. Boca Raton: CRC Press.; 2016 19 April 2016

  88. C. Sielmann, V. Siller, K. Walus, B. Stoeber, Acid-free electrochemical chromium etch and release of nanoscale gold films. J Microelectromech S. 25(4), 701–707 (2016)

    Google Scholar 

  89. H. Gou, J. Xu, X. Xia, H. Chen, Air plasma assisting microcontact deprinting and printing for gold thin film and PDMS patterns. ACS Appl. Mater. Interfaces 2(5), 1324–1330 (2010)

    Google Scholar 

  90. S. Dauer, A. Ehlert, S. Büttgenbach, Rapid prototyping of micromechanical devices using a Q-switched Nd: YAG laser with optional frequency doubling. Sensor Actuat A-Phys. 76(1–3), 381–385 (1999)

    Google Scholar 

  91. W. Schrott, M. Svoboda, Z. Slouka, D. Šnita, Metal electrodes in plastic microfluidic systems. Microelectron. Eng. 86(4–6), 1340–1342 (2009)

    Google Scholar 

  92. T. Green, Gold etching for microfabrication. Gold Bull. 47(3), 205–216 (2014)

    Google Scholar 

  93. L. Li, X. Zhao, C. Wong, Deep etching of single-and polycrystalline silicon with high speed, high aspect ratio, high uniformity, and 3D complexity by electric bias-attenuated metal-assisted chemical etching (EMaCE). ACS Appl Mater Inter. 6(19), 16782–16791 (2014)

    Google Scholar 

  94. C. Peng, B. Cardozo, S. Pang, Three-dimensional metal patterning over nanostructures by reversal imprint. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena. 26(2), 632–635 (2008)

    Google Scholar 

  95. S. Madsen, M. Esfandyarpour, M. Brongersma, R. Sinclair, Observing plasmon damping due to adhesion layers in gold nanostructures using electron energy loss spectroscopy. ACS photon. 4(2), 268–274 (2017)

    Google Scholar 

  96. Meng, W.J. and Mei, F., Louisiana State University and Mechanical College, 2018. Metal-based microchannel heat exchangers made by molding replication and assembly. U.S. Patent 9,891,006

  97. M. Focke, D. Kosse, C. Müller, H. Reinecke, R. Zengerle, F. Von Stetten, Lab-on-a-foil: Microfluidics on thin and flexible films. Lab Chip 10(11), 1365–1386 (2010)

    Google Scholar 

  98. J. Xiao, R. Chaudhuri, S. Seo, Adhesive polymer bonding method for integration of III-V thin-film optoelectronic devices onto silicon substrate. IEEE T Comp Pack Man. 8(3), 392–398 (2018)

    Google Scholar 

  99. L. Guo, S. De Weerth, High-density stretchable electronics: Toward an integrated multilayer composite. Adv. Mater. 22(36), 4030–4033 (2010)

    Google Scholar 

  100. C. Huang, M. Bazant, T. Thorsen, Ultrafast high-pressure AC electro-osmotic pumps for portable biomedical microfluidics. Lab Chip 10(1), 80–85 (2010)

    Google Scholar 

  101. Franssila S. Introduction to microfabrication. 2nd ed: John Wiley & Sons, Germany; 2010 2010

  102. D. Kang, Y. Kim, G. Ornelas, M. Sinha, K. Naidu, T. Coleman, Scalable microfabrication procedures for adhesive-integrated flexible and stretchable electronic sensors. Sensors. 15(9), 23459–23476 (2015)

    Google Scholar 

  103. A. Alazzam, N. Alamoodi, M. Abutayeh, I. Stiharu, V. Nerguizian, Fabrication of porous gold film using graphene oxide as a sacrificial layer. Materials. 12(14), 2305 (2019)

    Google Scholar 

  104. S. Zhu, R. Shabani, J. Rho, Y. Kim, B. Hong, J. Ahn, et al., Graphene-based bimorph microactuators. Nano Lett. 11(3), 977–981 (2011)

    Google Scholar 

  105. V. Perumal, U. Hashim, S. Gopinath, R. Haarindraprasad, W. Liu, P. Poopalan, et al., Thickness dependent nanostructural, morphological, optical and impedometric analyses of zinc oxide-gold hybrids: Nanoparticle to thin film. PLoS One 10(12), e0144964 (2015)

    Google Scholar 

  106. Z. Zeng, X. Long, H. Zhou, E. Guo, X. Wang, Z. Hu, On-chip interdigitated supercapacitor based on nano-porous gold/manganese oxide nanowires hybrid electrode. Electrochim. Acta 163, 107–115 (2015)

    Google Scholar 

  107. X. Wu, J. Zhou, J. Huang, Integration of biomaterials into sensors based on organic thin-film transistors. Macromol Rapid Comm. 39(15), 1800084 (2018)

    Google Scholar 

  108. K. Lee, L. Lin, Surface micromachined glass and polysilicon microchannels using MUMPs for BioMEMS applications. Sensor Actuat B-Chem. 111, 44–50 (2004)

    Google Scholar 

  109. L. Guo, S. DeWeerth, An effective lift-off method for patterning high-density gold interconnects on an elastomeric substrate. Small. 6(24), 2847–2852 (2010)

    Google Scholar 

  110. S. Sharma, K. Buchholz, S. Luber, U. Rant, Silicon-on-insulator microfluidic device with monolithic sensor integration for /spl mu/TAS applications. J. Microelectromech. Syst. 15(2), 308–313 (2006)

    Google Scholar 

  111. D. Qin, Y. Xia, G. Whitesides, Soft lithography for micro-and nanoscale patterning. Nat. Protoc. 5(3), 491 (2010)

    Google Scholar 

  112. P. Khashayar, G. Amoabediny, B. Larijani, M. Hosseini, S. Van Put, R. Verplancke, et al., Rapid prototyping of microfluidic chips using laser-cut double-sided tape for electrochemical biosensors. J. Braz. Soc. Mech. Sci. 39(5), 1469–1477 (2017)

    Google Scholar 

  113. H. Filiatrault, R. Carmichael, R. Boutette, T. Carmichael, A self-assembled, low-cost, microstructured layer for extremely stretchable gold films. ACS Appl Mater Inter. 7(37), 20745–20752 (2015)

    Google Scholar 

  114. T. Adrega, S. Lacour, Stretchable gold conductors embedded in PDMS and patterned by photolithography: Fabrication and electromechanical characterization. J. Micromech. Microeng. 20(5), 055025 (2010)

    Google Scholar 

  115. Y. Huang, A. Mason, Lab-on-CMOS integration of microfluidics and electrochemical sensors. Lab Chip 13(19), 3929–3934 (2013)

    Google Scholar 

  116. P. Lin, F. Yan, Organic thin-film transistors for chemical and biological sensing. Adv. Mater. 24(1), 34–51 (2012)

    Google Scholar 

  117. C. Wang, C. Yu, Detection of chemical pollutants in water using gold nanoparticles as sensors: A review. Rev. Anal. Chem. 32(1), 1–14 (2013)

    Google Scholar 

  118. P. Daggumati, Z. Matharu, E. Seker, Effect of nanoporous gold thin film morphology on electrochemical DNA sensing. Analyt chem. 87(16), 8149–8156 (2015)

    Google Scholar 

  119. K. Han, C. Li, M. Bui, X. Pham, B. Kim, Y. Choa, et al., On-chip electrochemical detection of bio/chemical molecule by nanostructures fabricated in a microfluidic channel. Sensor Actuat B-Chem. 177, 472–477 (2013)

    Google Scholar 

  120. C. Gabardo, R. Adams McGavin, O. Vanderfleet, L. Soleymani, Rapid prototyping of microfluidic devices with integrated wrinkled gold micro−/nano textured electrodes for electrochemical analysis. Analyst. 140(16), 5781–5788 (2015)

    Google Scholar 

  121. D. Liana, B. Raguse, L. Wieczorek, G. Baxter, K. Chuah, J. Gooding, et al., Sintered gold nanoparticles as an electrode material for paper-based electrochemical sensors. RSC Adv. 3(23), 8683–8691 (2013)

    Google Scholar 

  122. P. Lisowski, P. Zarzycki, Microfluidic paper-based analytical devices (μPADs) and micro total analysis systems (μTAS): Development, applications and future trends. Chromatographia. 76(19–20), 1201–1214 (2013)

    Google Scholar 

  123. A. Manz, N. Graber, H. Widmer, Miniaturized total chemical analysis systems: A novel concept for chemical sensing. Sensor Actuat B-Chem. 1(1–6), 244–248 (1990)

    Google Scholar 

  124. J. Mark, A. Kumar, H. Demattio, W. Hoffmann, A. Malik, F. Matysik, Combination of headspace single-drop microextraction, microchip electrophoresis and contactless conductivity detection for the determination of aliphatic amines in the biodegradation process of seafood samples. Electroanalysis. 23(1), 161–168 (2011)

    Google Scholar 

  125. X. Illa, O. Ordeig, D. Snakenborg, A. Romano Rodríguez, R. Compton, J. Kutter, A cyclo olefin polymer microfluidic chip with integrated gold microelectrodes for aqueous and non-aqueous electrochemistry. Lab Chip 10(10), 1254–1261 (2010)

    Google Scholar 

  126. R. Carvalhal, M. Simão Kfouri, P.M. de Oliveira, A. Gobbi, L. Kubota, Electrochemical detection in a paper-based separation device. Analyt Chem. 82(3), 1162–1165 (2010)

    Google Scholar 

  127. H. Qi, L. Niu, J. Zhang, J. Chen, S. Wang, J. Yang, et al., Large-area gold nanohole arrays fabricated by one-step method for surface plasmon resonance biochemical sensing. Sci. China Life Sci. 61(4), 476–482 (2018)

    Google Scholar 

  128. K. Nakamoto, R. Kurita, O. Niwa, Electrochemical surface plasmon resonance measurement based on gold nanohole array fabricated by nanoimprinting technique. Analyt Chem. 84(7), 3187–3191 (2012)

    Google Scholar 

  129. K. Namura, K. Nakajima, K. Kimura, M. Suzuki, Microfluidic control on nanoplasmonic thin films using Marangoni effect. J of Nanophotonics. 10(3), 033006 (2016)

    Google Scholar 

  130. H. Ma, J. Hao, Evaporation induced ordered honeycomb structures of gold nanoparticles at the air/water interface. Chem Eur J 16(2), 655–660 (2010)

    Google Scholar 

  131. L. Lin, Microscale thermal bubble formation: Thermophysical phenomena and applications. Microscale Thermophysical Engineering. 2(2), 71–85 (1998)

    Google Scholar 

  132. J. Navarro, M. Werts, Resonant light scattering spectroscopy of gold, silver and gold–silver alloy nanoparticles and optical detection in microfluidic channels. Analyst. 138(2), 583–592 (2013)

    Google Scholar 

  133. J. Zhou, D. Khodakov, A. Ellis, N. Voelcker, Surface modification for PDMS-based microfluidic devices. Electrophoresis. 33(1), 89–104 (2012)

    Google Scholar 

  134. H. Jiang, X. Weng, D. Li, Microfluidic whole-blood immunoassays. Microfluid. Nanofluid. 10(5), 941–964 (2011)

    Google Scholar 

  135. Y. Luo, F. Yu, R. Zare, Microfluidic device for immunoassays based on surface plasmon resonance imaging. Lab Chip 8(5), 694–700 (2008)

    Google Scholar 

  136. Sarid D, Challener W. Modern introduction to surface plasmons: theory, mathematica modeling, and applications. Tucson, Arizona, Eden Prairie, Minnesota: Cambridge University Press; 2009 July

  137. J. Qi, P. Motwani, M. Gheewala, C. Brennan, J. Wolfe, W. Shih, Surface-enhanced Raman spectroscopy with monolithic nanoporous gold disk substrates. Nanoscale. 5(10), 4105–4109 (2013)

    Google Scholar 

  138. E. Seker, Y. Berdichevsky, M. Begley, M. Reed, K. Staley, M. Yarmush, The fabrication of low-impedance nanoporous gold multiple-electrode arrays for neural electrophysiology studies. Nanotechnology. 21(12), 125504 (2010)

    Google Scholar 

  139. A. Barbosa, J. Wichers, A. van Amerongen, N. Reis, Towards one-step quantitation of prostate-specific antigen (PSA) in microfluidic devices: Feasibility of optical detection with nanoparticle labels. Bio Nano Science. 7(4), 718–726 (2017)

    Google Scholar 

  140. J. Rho, W. Jang, I. Hwang, D. Lee, C. Lee, T. Chung, Multiplex immunoassays using virus-tethered gold microspheres by DC impedance-based flow cytometry. Biosens. Bioelectron. 102, 121–128 (2018)

    Google Scholar 

  141. M. Lee, K. Lee, K. Kim, K. Oh, J. Choo, SERS-based immunoassay using a gold array-embedded gradient microfluidic chip. Lab Chip 12(19), 3720–3727 (2012)

    Google Scholar 

  142. C. Dixit, K. Kadimisetty, B. Otieno, C. Tang, S. Malla, C. Krause, et al., Electrochemistry-based approaches to low cost, high sensitivity, automated, multiplexed protein immunoassays for cancer diagnostics. Analyst. 141(2), 536–547 (2016)

    Google Scholar 

  143. R. Kurita, Y. Yokota, Y. Sato, F. Mizutani, O. Niwa, On-chip enzyme immunoassay of a cardiac marker using a microfluidic device combined with a portable surface plasmon resonance system. Analyt chem. 78(15), 5525–5531 (2006)

    Google Scholar 

  144. H. Tsai, C. Lin, Y. Juang, I. Wang, Y. Lin, R. Wang, et al., Multiple type biosensors fabricated using the CMOS BioMEMS platform. Sensor Actuat B-Chem. 144(2), 407–412 (2010)

    Google Scholar 

  145. C. Seguin, J. McLachlan, P. Norton, L.F. Lagugné, Surface modification of poly (dimethylsiloxane) for microfluidic assay applications. Appl. Surf. Sci. 256(8), 2524–2531 (2010)

    Google Scholar 

  146. P. Daggumati, S. Appelt, Z. Matharu, M. Marco, E. Seker, Sequence-specific electrical purification of nucleic acids with nanoporous gold electrodes. J. Am. Chem. Soc. 138(24), 7711–7717 (2016)

    Google Scholar 

  147. S. Unser, I. Bruzas, J. He, L. Sagle, Localized surface plasmon resonance biosensing: Current challenges and approaches. Sensors. 15(7), 15684–15716 (2015)

    Google Scholar 

  148. S. Klinghammer, T. Uhlig, F. Patrovsky, M. Böhm, J. Schütt, N. Pütz, et al., Plasmonic biosensor based on vertical arrays of gold nanoantennas. ACS sensors. 3(7), 1392–1400 (2018)

    Google Scholar 

  149. S. Shim, H. Park, G. Choi, H. Shin, S. Kim, A simply fabricated neural probe by laser machining of a thermally laminated gold thin film on transparent cyclic olefin polymer. ACS Omega. 4(2), 2590–2595 (2019)

    Google Scholar 

  150. D. Ziegler, T. Suzuki, S. Takeuchi, Fabrication of flexible neural probes with built-in microfluidic channels by thermal bonding of parylene. J. Microelectromech. Syst. 15(6), 1477–1482 (2006)

    Google Scholar 

  151. H. Zhang, J. Jackson, M. Chiao, Microfabricated drug delivery devices: Design, fabrication, and applications. Adv. Funct. Mater. 27(45), 1703606 (2017)

    Google Scholar 

  152. A. Patra, T. Ding, G. Engudar, Y. Wang, M. Dykas, B. Liedberg, et al., Component-specific analysis of plasma protein corona formation on gold nanoparticles using multiplexed surface plasmon resonance. Small. 12(9), 1174–1182 (2016)

    Google Scholar 

  153. H. Chirra, T. Desai, Emerging microtechnologies for the development of oral drug delivery devices. Adv. Drug Deliv. Rev. 64(14), 1569–1578 (2012)

    Google Scholar 

  154. L. Engel, C. Liu, N. Hemed, Y. Khan, A. Arias, Y. Shacham Diamand, et al., Local electrochemical control of hydrogel microactuators in microfluidics. J. Micromech. Microeng. 28(10), 105005 (2018)

    Google Scholar 

  155. M. McClain, I. Clements, R. Shafer, R. Bellamkonda, M. LaPlaca, M. Allen, Highly-compliant, microcable neuroelectrodes fabricated from thin-film gold and PDMS. Biomed Microdev. 13(2), 361–373 (2011)

    Google Scholar 

  156. R. Wong, J. Posner, V. Santos, Flexible microfluidic normal force sensor skin for tactile feedback. Sensor Actuat A-Phys. 179, 62–69 (2012)

    Google Scholar 

  157. H. Kaji, G. Camci Unal, R. Langer, A. Khademhosseini, Engineering systems for the generation of patterned co-cultures for controlling cell–cell interactions. Biochimica et Biophysica Acta (BBA)-General Subjects (3), 239–250 (2011, 1810)

  158. Richardson J, Björnmalm M, Caruso F. Technology-driven layer-by-layer assembly of nanofilms. science. 2015;348(6233)

  159. M. Patrascu, J. Gonzalo Ruiz, M. Goedbloed, S. Brongersma, C.M. Crego, Flexible, electrostatic microfluidic actuators based on thin film fabrication. Sensor Actuat A-Physic. 186, 249–256 (2012)

    Google Scholar 

  160. S. Low, N. Voelcker, L. Canham, K. Williams, The biocompatibility of porous silicon in tissues of the eye. Biomaterials. 30(15), 2873–2880 (2009)

    Google Scholar 

  161. L. Schmid, D. Weitz, T. Franke, Sorting drops and cells with acoustics: Acoustic microfluidic fluorescence-activated cell sorter. Lab Chip 14(19), 3710–3718 (2014)

    Google Scholar 

  162. M. Odijk, A. Baumann, W. Lohmann, F. van den Brink, W. Olthuis, U. Karst, et al., A microfluidic chip for electrochemical conversions in drug metabolism studies. Lab Chip 9(12), 1687–1693 (2009)

    Google Scholar 

  163. Q. Wang, Y. Yu, J. Liu, Preparations, characteristics and applications of the functional liquid metal materials. Adv. Eng. Mater. 20(5), 1700781 (2018)

    Google Scholar 

  164. J. Kim, S. Park, T. Nguyen, M. Chu, J. Pegan, M. Khine, Highly stretchable wrinkled gold thin film wires. Appl. Phys. Lett. 108(6), 061901 (2016)

    Google Scholar 

  165. Y.A. Bani, Fabrication of electrochemically deposited microelectrodes for microfluidic MEMS applications. Int. J. Electrochem. Sci. 5, 1837–1846 (2010)

    Google Scholar 

Download references

Funding

MRH was supported by US NIH Grants R01AI050875 and R21AI121700.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Mohammadreza Tahriri or Michael R. Hamblin.

Ethics declarations

Conflict of interest

MRH declares the following potential conflicts of interest. Scientific Advisory Boards: Transdermal Cap Inc., Cleveland, OH; BeWell Global Inc., Wan Chai, Hong Kong; Hologenix Inc. Santa Monica, CA; LumiThera Inc., Poulsbo, WA; Vielight, Toronto, Canada; Bright Photomedicine, Sao Paulo, Brazil; Quantum Dynamics LLC, Cambridge, MA; Global Photon Inc., Bee Cave, TX; Medical Coherence, Boston MA; NeuroThera, Newark DE; JOOVV Inc., Minneapolis-St. Paul MN; AIRx Medical, Pleasanton CA; FIR Industries, Inc. Ramsey, NJ; UVLRx Therapeutics, Oldsmar, FL; Ultralux UV Inc., Lansing MI; Illumiheal & Petthera, Shoreline, WA; MB Lasertherapy, Houston, TX; ARRC LED, San Clemente, CA; Varuna Biomedical Corp. Incline Village, NV; Niraxx Light Therapeutics, Inc., Boston, MA. Consulting; Lexington Int, Boca Raton, FL; USHIO Corp, Japan; Merck KGaA, Darmstadt, Germany; Philips Electronics Nederland B.V. Eindhoven, Netherlands; Johnson & Johnson Inc., Philadelphia, PA; Sanofi-Aventis Deutschland GmbH, Frankfurt am Main, Germany. Stockholdings: Global Photon Inc., Bee Cave, TX; Mitonix, Newark, DE.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Toudeshkchoui, M.G., Rabiee, N., Rabiee, M. et al. Microfluidic devices with gold thin film channels for chemical and biomedical applications: a review. Biomed Microdevices 21, 93 (2019). https://doi.org/10.1007/s10544-019-0439-0

Download citation

Keywords

  • Microfluidic systems
  • Gold thin film channels
  • Biomedical applications
  • Surface plasmonic resonance
  • Electrochemical sensors