A high-throughput microfluidic method for fabricating aligned collagen fibrils to study Keratocyte behavior

Abstract

In vivo, keratocytes are surrounded by aligned type I collagen fibrils that are organized into lamellae. A growing body of literature suggests that the unique topography of the corneal stroma is an important regulator of keratocyte behavior. In this study we describe a microfluidic method to deposit aligned fibrils of type I collagen onto glass coverslips. This high-throughput method allowed for the simultaneous coating of up to eight substrates with aligned collagen fibrils. When these substrates were integrated into a PDMS microwell culture system they provided a platform for high-resolution imaging of keratocyte behavior. Through the use of wide-field fluorescence and differential interference contrast microscopy, we observed that the density of collagen fibrils deposited was dependent upon both the perfusion shear rate of collagen and the time of perfusion. In contrast, a similar degree of fibril alignment was observed over a range of shear rates. When primary normal rabbit keratocytes (NRK) were seeded on substrates with a high density of aligned collagen fibrils and cultured in the presence of platelet derived growth factor (PDGF) the keratocytes displayed an elongated cell body that was co-aligned with the underlying collagen fibrils. In contrast, when NRK were cultured on substrates with a low density of aligned collagen fibrils, the cells showed no preferential orientation. These results suggest that this simple and inexpensive method can provide a general platform to study how simultaneous exposure to topographical and soluble cues influence cell behavior.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. C. Chaubaroux, F. Perrin-Schmitt, B. Senger, L. Vidal, J.-C. Voegel, P. Schaaf, Y. Haikel, F. Boulmedais, P. Lavalle, J. Hemmerlé, Tissue Eng. Part C Methods 21, 881 (2015)

    Google Scholar 

  2. P.K. Chaudhuri, C.Q. Pan, B.C. Low, C.T. Lim, Sci. Rep. 6, 19672 (2016)

    Google Scholar 

  3. X. Cheng, U.A. Gurkan, C.J. Dehen, M.P. Tate, H.W. Hillhouse, G.J. Simpson, O. Akkus, Biomaterials 29, 3278 (2008)

    Google Scholar 

  4. P.A. Coghill, E.K. Kesselhuth, E.A. Shimp, D.B. Khismatullin, D.W. Schmidtke, Biomed. Microdevices 15, 183 (2013)

    Google Scholar 

  5. M.J. Dalby, M.O. Riehle, S.J. Yarwood, C.D.W. Wilkinson, A.S.G. Curtis, Exp. Cell Res. 284, 272 (2003)

    Google Scholar 

  6. J.M. Dang, K.W. Leong, Adv. Mater. 19, 2775 (2007)

    Google Scholar 

  7. B.A. David, P. Kubes, Immunol. Rev. 289, 9 (2019)

    Google Scholar 

  8. N. Gjorevski, A.S. Piotrowski, V.D. Varner, C.M. Nelson, Sci. Rep. 5, 11458 (2015)

    Google Scholar 

  9. R. Gruschwitz, J. Friedrichs, M. Valtink, C.M. Franz, D.J. Muller, R.H.W. Funk, K. Engelmann, Invest. Ophthalmol. Vis. Sci. 51, 6303 (2010)

    Google Scholar 

  10. M.D. Guillemette, B. Cui, E. Roy, R. Gauvin, C.J. Giasson, M.B. Esch, P. Carrier, A. Deschambeault, M. Dumoulin, M. Toner, L. Germain, T. Veres, F.A. Auger, Integr. Biol. 1, 196 (2009)

    Google Scholar 

  11. X. Guo, A.E.K. Hutcheon, S.A. Melotti, J.D. Zieske, V. Trinkaus-Randall, J.W. Ruberti, Investig. Ophthalmol. Vis. Sci. 48, 4050 (2007)

    Google Scholar 

  12. J.V. Jester, W.M. Petroll, P.A. Barry, H.D. Cavanagh, Invest. Ophthalmol. Vis. Sci. 36(809) (1995)

  13. D. Karamichos, N. Lakshman, W.M. Petroll, Cell Motil. Cytoskeleton 66, 1 (2009)

    Google Scholar 

  14. D. Karamichos, M.L. Funderburgh, A.E.K. Hutcheon, J.D. Zieske, Y. Du, J. Wu, J.L. Funderburgh, PLoS One 9, e86260 (2014)

    Google Scholar 

  15. W. J. Karlon, J. W. Covell, A. D. Mcculloch, J. J. Hunter, and J. H. Omens, 625, 612 (1998)

    Google Scholar 

  16. N.W. Karuri, S. Liliensiek, A.I. Teixeira, G. Abrams, S. Campbell, P.F. Nealey, C.J. Murphy, J. Cell Sci. 117, 3153 (2004)

    Google Scholar 

  17. J. D. Kiang, J. H. Wen, J. C. Del Álamo, and A. J. Engler, J. Biomed. Mater. Res. - Part A 101 A, 2313 (2013)

  18. P.B. Kivanany, K.C. Grose, W.M. Petroll, Exp. Eye Res. 153, 56 (2016)

    Google Scholar 

  19. P. Kivanany, K. Grose, N. Yonet-Tanyeri, S. Manohar, Y. Sunkara, K. Lam, D. Schmidtke, V. Varner, W. Petroll, J. Funct. Biomater. 9, 54 (2018)

    Google Scholar 

  20. L.B. Koh, I. Rodriguez, S.S. Venkatraman, Biomaterials 31, 1533 (2010)

    Google Scholar 

  21. S. Koo, R. Muhammad, G.S.L. Peh, J.S. Mehta, E.K.F. Yim, Acta Biomater. 10, 1975 (2014)

    Google Scholar 

  22. S. Köster, J.B. Leach, B. Struth, T. Pfohl, J.Y. Wong, Langmuir 23, 357 (2007)

    Google Scholar 

  23. B. Lanfer, U. Freudenberg, R. Zimmermann, D. Stamov, V. Körber, C. Werner, Biomaterials 29, 3888 (2008)

    Google Scholar 

  24. B. Lanfer, F.P. Seib, U. Freudenberg, D. Stamov, T. Bley, M. Bornhäuser, C. Werner, Biomaterials 30, 5950 (2009)

    Google Scholar 

  25. L. Lara Rodriguez, I.C. Schneider, Integr. Biol. 5, 1306 (2013)

    Google Scholar 

  26. P. Lee, R. Lin, J. Moon, L.P. Lee, Biomed. Microdevices 8, 35 (2006)

    Google Scholar 

  27. H.Y. Lou, W. Zhao, Y. Zeng, B. Cui, Acc. Chem. Res. 51, 1046 (2018)

    Google Scholar 

  28. K. Metavarayuth, P. Sitasuwan, X. Zhao, Y. Lin, Q. Wang, ACS Biomater. Sci. Eng. 2, 142 (2016)

    Google Scholar 

  29. M. Miron-Mendoza, E. Graham, S. Manohar, W.M. Petroll, Matrix Biol. 64, 69 (2017)

    Google Scholar 

  30. R. Muhammad, G.S.L. Peh, K. Adnan, J.B.K. Law, J.S. Mehta, E.K.F. Yim, Acta Biomater. 19, 138 (2015)

    Google Scholar 

  31. L. Muthusubramaniam, L. Peng, T. Zaitseva, M. Paukshto, G.R. Martin, T.A. Desai, J Biomed Mater Res Part A 100A, 613 (2012)

    Google Scholar 

  32. K. E. Myrna, R. Mendonsa, P. Russell, S. A. Pot, S. J. Liliensiek, J. V Jester, P. F. Nealey, D. Brown, and C. J. Murphy, Invest Ophthalmol Vis Sci 53, 811 (2012)

  33. W.M. Petroll, P.B. Kivanany, D. Hagenasr, E.K. Graham, Investig. Ophthalmol. Vis. Sci. 56, 7352 (2015)

    Google Scholar 

  34. D. Phu, L.S. Wray, R.V. Warren, R.C. Haskell, E.J. Orwin, Tissue Eng Part A 17, 799 (2011)

    Google Scholar 

  35. E.T. Roussos, J.S. Condeelis, A. Patsialou, Nat. Rev. Cancer 11, 573 (2011)

    Google Scholar 

  36. N. Saeidi, E.A. Sander, J.W. Ruberti, Biomaterials 30, 6581 (2009)

    Google Scholar 

  37. N. Saeidi, E.A. Sander, R. Zareian, J.W. Ruberti, Acta Biomater. 7, 2437 (2011)

    Google Scholar 

  38. N. Saeidi, K.P. Karmelek, J.A. Paten, R. Zareian, E. DiMasi, J.W. Ruberti, Biomaterials 33, 7366 (2012)

    Google Scholar 

  39. A. Saez, M. Ghibaudo, A. Buguin, P. Silberzan, B. Ladoux, Proc. Natl. Acad. Sci. 104, 8281 (2007)

    Google Scholar 

  40. K.E. Sung, G. Su, C. Pehlke, S.M. Trier, K.W. Eliceiri, P.J. Keely, A. Friedl, D.J. Beebe, Biomaterials 30, 4833 (2009)

    Google Scholar 

  41. T. Tabata, Development 131, 703 (2004)

    Google Scholar 

  42. A.I. Teixeira, G.A. Abrams, P.J. Bertics, C.J. Murphy, P.F. Nealey, J. Cell Sci. 116, 1881 (2003)

    Google Scholar 

  43. A. I. Teixeira, P. F. Nealey, and C. J. Murphy, J. Biomed. Mater. Res. - Part A 71, 369 (2004)

  44. J. Torbet, M. Malbouyres, N. Builles, V. Justin, M. Roulet, O. Damour, Å. Oldberg, F. Ruggiero, D.J.S. Hulmes, Biomaterials 28, 4268 (2007)

    Google Scholar 

  45. J.R. Tse, A.J. Engler, PLoS One 6, e15978 (2011)

    Google Scholar 

  46. E. Vrana, N. Builles, M. Hindie, O. Damour, A. Aydinli, V. Hasirci, J Biomed Mater Res Part A 84A, 454 (2008)

    Google Scholar 

  47. B.M. Whited, M.N. Rylander, Biotechnol. Bioeng. 111, 184 (2014)

    Google Scholar 

  48. S. Zhong, W. E. Teo, X. Zhu, R. W. Beuerman, S. Ramakrishna, and L. Y. L. Yung, J. Biomed. Mater. Res. - Part A 79, 456 (2006)

Download references

Acknowledgements

This work was supported in part by grants from the National Institutes of Health (R01 EY013322, R01 EY030190), a Trainee Fellowship from the UT-Southwestern Hamon Center for Regenerative Science and Medicine (CRSM) Trainee to KHL, a Pilot and Feasibility grant from the UT Southwestern O’Brien Kidney Research Core Center, and a grant from Research to Prevent Blindness, Inc. and funds from the Office of Vice President of Research at the University of Texas at Dallas. The authors would like to thank Somdutta Chakraborty for assistance with some of the confocal imaging. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Affiliations

Authors

Corresponding author

Correspondence to David W. Schmidtke.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 5305 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lam, K.H., Kivanany, P.B., Grose, K. et al. A high-throughput microfluidic method for fabricating aligned collagen fibrils to study Keratocyte behavior. Biomed Microdevices 21, 99 (2019). https://doi.org/10.1007/s10544-019-0436-3

Download citation

Keywords

  • Collagen
  • Fibrils
  • Keratocytes
  • Microfluidic
  • PDMS
  • Aligned