Skip to main content
Log in

In situ three-dimensional printing for reparative and regenerative therapy

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Three-dimensional (3D) bioprinting is an emerging biofabrication technology, driving many innovations and opening new avenues in regenerative therapeutics. The aim of 3D bioprinting is to fabricate grafts in vitro, which can then be implanted in vivo. However, the tissue culture ex vivo carries safety risks and thereby complicated manufacturing equipment and practice are required for tissues to be implanted in the humans. The implantation of printed tissues also adds complexities due to the difficulty in maintaining the structural integrity of fabricated constructs. To tackle this challenge, the concept of in situ 3D bioprinting has been suggested in which tissues are directly printed at the site of injury or defect. Such approach could be combined with cells freshly isolated from patients to produce custom-made grafts that resemble target tissue and fit precisely to target defects. Moreover, the natural cellular microenvironment in the body can be harnessed for tissue maturation resulting in the tissue regeneration and repair. Here, we discuss literature reports on in situ 3D printing and we describe future directions and challenges for in situ 3D bioprinting. We expect that this novel technology would find great attention in different biomedical fields in near future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  • S. Ahadian, R.B. Sadeghian, S. Salehi, S. Ostrovidov, H. Bae, M. Ramalingam, A. Khademhosseini, Bioconjugated hydrogels for tissue engineering and regenerative medicine. Bioconjugate Chem. 26 1984–2001 (2015)

  • S. Ahadian, R. Civitarese, D. Bannerman, M.H. Mohammadi, R. Lu, E. Wang, L. Davenport-Huyer, B. Lai, B. Zhang, Y. Zhao, S. Mandla, A. Korolj, M. Radisic, Organ-on-a-chip platforms: a convergence of advanced materials, cells, and microscale technologies. Adv. Healthc. Mater. 7, 1700506 (2018)

  • M. Albanna, S. Murphy, W. Zhao, I. El-Amin, J. Tan, D. Dice, H.-W. Kang, J. Jackson, A. Atala, J. Yoo, In situ bioprinting of skin for reconstruction. J. Am. Coll. Surg. 187, e8 (2012)

    Google Scholar 

  • E.D. Anderson, I. Sastalla, N.J. Earland, M. Mahnaz, I.N. Moore, F. Otaizo-Carrasquero, T.G. Myers, C.A. Myles, S.K. Datta, I.A. Myles, Prolonging culture of primary human keratinocytes isolated from suction blisters with the Rho kinase inhibitor Y-27632. Plos One 13, e0198862 (2018)

    Article  Google Scholar 

  • N. Ashammakhi, O. Kaarela, Three-dimensional bioprinting can help bone. J. Craniofac. Surg. 29, 9–11 (2018)

    Article  Google Scholar 

  • N. Ashammakhi, S. Ahadian, F. Zengjie, K. Suthiwanich, F. Lorestani, G. Orive, S. Ostrovidov, A. Khademhosseini, Advances and future perspectives in 4D bioprinting. Biotechnol. J. 13, 1800148 (2018)

    Article  Google Scholar 

  • N. Ashammakhi, S. Ahadian, M.A. Darabi, M. El Tahchi, J. Lee, K. Suthiwanich, A. Sheikhi, M.R. Dokmeci, R. Oklu, A. Khademhosseini, Minimally invasive and regenerative therapeutics. Adv. Mater. 31, 1804041 (2019)

    Article  Google Scholar 

  • K.W. Binder, W. Zhao, T. Aboushwareb, D. Dice, A. Atala, J. Yoo, In situ bioprinting of the skin for burns. J. Am. Coll. Surg. 211, S76 (2010)

    Article  Google Scholar 

  • D.L. Cohen, J.I. Lipton, L.J. Bonassar, H.J.B. Lipson, Additive manufacturing for in situ repair of osteochondral defects. Biofabrication 2, 035004 (2010)

    Article  Google Scholar 

  • C. Colosi, S.R. Shin, V. Manoharan, S. Massa, M. Costantini, A. Barbetta, M.R. Dokmeci, M. Dentini, A. Khademhosseini, Microfluidic bioprinting of heterogeneous 3D tissue constructs using low-viscosity bioink. Adv. Mater. 28 677–684 (2016)

  • P. Datta, V. Ozbolat, B. Ayan, A. Dhawan, I.T. Ozbolat, Bone tissue bioprinting for craniofacial reconstruction. Biotechnol. Bioeng. 114, 2424–2431 (2017)

    Article  Google Scholar 

  • C. Di Bella, S. Duchi, C.D. O'Connell, R. Blanchard, C. Augustine, Z. Yue, F. Thompson, C. Richards, S. Beirne, C. Onofrillo, S.H. Bauquier, S.D. Ryan, P. Pivonka, G.G. Wallace, P.F. Choong, In situ handheld three-dimensional bioprinting for cartilage regeneration. J. Tissue. Eng. Regen. Med. 12, 611–621 (2018)

  • S. Duchi, C. Onofrillo, C. O’Connell, R. Blanchard, C. Augustine, A. Quigley, R. Kapsa, P. Pivonka, G. Wallace, C. Di Bella, Handheld co-axial bioprinting: Application to in situ surgical cartilage repair. Sci. Rep. 7, 5837 (2017)

    Article  Google Scholar 

  • N. Faramarzi, I.K. Yazdi, M. Nabavinia, A. Gemma, A. Fanelli, A. Caizzone, L.M. Ptaszek, I. Sinha, A. Khademhosseini, J.N. Ruskin, A. Tamayol, Patient-specific bioinks for 3D bioprinting of tissue engineering scaffolds. Adv. Healthc. Mater. 7, 1701347 (2018)

  • H. Gudapati, M. Hospodiuk, V. Ozbolat, D. Ravnic, I. Ozbolat, In-situ droplet-based bioprinting for functional skin regeneration. In: New Jersy Symposium on Biomaterials Science, (2017)

  • P.S. Gungor-Ozkerim, I. Inci, Y.S. Zhang, A. Khademhosseini, M.R. Dokmeci, Bioinks for 3D bioprinting: an overview. Biomater. Sci. 6, 915–946 (2018)

    Article  Google Scholar 

  • N. Hakimi, R. Cheng, L. Leng, M. Sotoudehfar, P.Q. Ba, N. Bakhtyar, S. Amini-Nik, M.G. Jeschke, A. Günther, Handheld skin printer: in situ formation of planar biomaterials and tissues. Lab. Chip. 18, 1440–1451 (2018)

    Article  Google Scholar 

  • V. Keriquel, F. Guillemot, I. Arnault, B. Guillotin, S. Miraux, J. Amédée, J.-C. Fricain, S.J.B. Catros, In vivo bioprinting for computer-and robotic-assisted medical intervention: preliminary study in mice. Biofabrication 2, 014101 (2010)

  • V. Keriquel, H. Oliveira, M. Rémy, S. Ziane, S. Delmond, B. Rousseau, S. Rey, S. Catros, J Amédée, F. Guillemot, J.C. Fricain, In situ printing of mesenchymal stromal cells, by laser-assisted bioprinting, for in vivo bone regeneration applications. Sci. Rep. 7, 1778 (2017)

  • A. Khademhosseini, R. Langer, A decade of progress in tissue engineering. Nat. Protoc. 11, 1775 (2016)

    Article  Google Scholar 

  • G.T. Kirby, A. Michelmore, L.E. Smith, J.D. Whittle, R.D. Short, Cell sheets in cell therapies. Cytotherapy 20, 169–180 (2018)

  • Y.-C. Li, Y.S. Zhang, A. Akpek, S.R. Shin, A. Khademhosseini, 4D bioprinting: the next-generation technology for biofabrication enabled by stimuli-responsive materials. Biofabrication 9, 012001 (2016)

    Article  Google Scholar 

  • Z. Li, C.C. Tasan, H. Springer, B. Gault, D. Raabe, Interstitial atoms enable joint twinning and transformation induced plasticity in strong and ductile high-entropy alloys. Sci. Rep. 7, 40704 (2017)

  • W. Liu, Y.S. Zhang, M.A. Heinrich, F.D. Ferrari, H.L. Jang, S.M. Bakht, M.M. Alvarez, J. Yang, Y.C. Li, G.T. Santiago, A.K. Miri, K. Zhu, P. Khoshakhlagh, G. Prakash, H. Cheng, X. Guan, Z. Zhong, J. Ju, G.H. Zhu, S.R. Shin, M.R. Dokmeci, A. Khademhosseini, Rapid continuous multimaterial extrusion bioprinting Adv. Mater. 29, 1604630 (2017)

  • A.K. Miri, D. Nieto, L. Iglesias, H. Goodarzi Hosseinabadi, S. Maharjan, G.U. Ruiz-Esparza, P. Khoshakhlagh, A. Manbachi, M.R. Dokmeci, S. Chen, S.R. Shin, Y.S. Zhang, A. Khademhosseini, Microfluidics-enabled multimaterial maskless stereolithographic bioprinting. Adv. Mater. 30, 1800242 (2018)

  • A. Skardal, D. Mack, E. Kapetanovic, A. Atala, J.D. Jackson, J. Yoo, S. Soker, Bioprinted amniotic fluid-derived stem cells accelerate healing of large skin wounds. Stem. Cells Transl. Med. 1, 792–802 (2012)

    Article  Google Scholar 

  • A. Skardal, S.V. Murphy, K. Crowell, D. Mack, A. Atala, S. Soker, A tunable hydrogel system for long-term release of cell-secreted cytokines and bioprinted in situ wound cell delivery. J. Biomed. Mater. Res. B Appl. Biomater. 105, 1986–2000 (2017)

    Article  Google Scholar 

  • P. Sofokleous, E. Stride, W. Bonfield, M.J.M.S. Edirisinghe, Design, construction and performance of a portable handheld electrohydrodynamic multi-needle spray gun for biomedical applications. Mater. Sci. Eng. C Mater. Biol. Appl. 33, 213–223 (2013)

    Article  Google Scholar 

  • R. Sood, D.E. Roggy, M.J. Zieger, M. Nazim, B.C. Hartman, J.T. Gibbs A comparative study of spray keratinocytes and autologous meshed split-thickness skin graft in the treatment of acute burn injuries, Wounds 27 31–40 (2015)

  • N. Taira, K. Ino, J. Robert, H. Shiku, Electrochemical printing of calcium alginate/gelatin hydrogel. Electrochem. Acta 281, 429–436 (2018)

  • N. Tellisi, N.A. Ashammakhi, F. Billi, O. Kaarela, Three dimensional printed bone implants in the clinic. J. Craniofac. Surg. 29, 2363–2367 (2018)

    Google Scholar 

  • M. Wang, J. He, Y. Liu, M. Li, D. Li, Z. Jin, The trend towards in vivo bioprinting. Int. J. Bioprinting 1, 15–26 (2015a)

  • S. Wang, J.M. Lee, W.Y. Yeong, Smart hydrogels for 3D bioprinting. Int. J. Bioprinting 1, 3–14 (2015b)

    Google Scholar 

  • Y.S. Zhang, A. Arneri, S. Bersini, S.-R. Shin, K. Zhu, Z. Goli-Malekabadi, J. Aleman, C. Colosi, F. Busignani, V. Dell'Erba, C. Bishop, T. Shupe, D. Demarchi, M. Moretti, M. Rasponi, M.R. Dokmeci, A. Atala, A. Khademhosseini, Bioprinting 3D microfibrous scaffolds for engineering endothelialized myocardium and heart-on-a-chip. Biomaterials 110, 45–59 (2016)

  • Y.S. Zhang, K. Yue, J. Aleman, K. Mollazadeh-Moghaddam, S.M. Bakht, J. Yang, W. Jia, V. Dell’Erba, P. Assawes, S.R. Shin, M.R. Dokmeci, R. Oklu, A. Khademhosseini, 3D bioprinting for tissue and organ fabrication. Ann. Biomed. Eng. 45, 148–163 (2017)

Download references

Acknowledgements

The authors acknowledge funding from the National Institutes of Health (EB021857, AR066193, AR057837, CA214411, HL137193, EB024403, EB023052, EB022403, and EB021857), and Air Force Office of Sponsored Research under award #FA9550-15-1-0273.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nureddin Ashammakhi or Ali Khademhosseini.

Ethics declarations

Conflict of interest

The authors have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashammakhi, N., Ahadian, S., Pountos, I. et al. In situ three-dimensional printing for reparative and regenerative therapy. Biomed Microdevices 21, 42 (2019). https://doi.org/10.1007/s10544-019-0372-2

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10544-019-0372-2

Keywords

Navigation