Skip to main content
Log in

Operation evaluation in-human of a novel remote-controlled vascular interventional robot

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Remote-controlled vascular interventional robots (RVIRs) are being developed to increase the accuracy of surgical operations and reduce the number of occupational risks sustained by intervening physicians, such as radiation exposure and chronic neck/back pain. However, complex control of the RVIRs improves the doctor’s operation difficulty and reduces the operation efficiency. Furthermore, incomplete sterilization of the RVIRs will increase the risk of infection, or even cause medical accidents. In this study, we introduced a novel method that provides higher operation efficiency than a previous prototype and allows for complete robot sterilization. A prototype was fabricated and validated through laboratory setting experiments and an in-human experiment. The results illustrated that the proposed RVIR has better performance compared with the previous prototype, and preliminarily demonstrated that the proposed RVIR has good safety and reliability and can be used in clinical surgeries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • F. Arai, R. Fujimura, T. Fukuda, M. Negoro, New catheter driving method using linear stepping mechanism for intravascular neurosurgery. IEEE International Conference on Robotics and Automation. 2944-2949 (2002)

  • X. Bao, S. Guo, N. Xiao, Y. Wang, M. Qin, Y. Zhao, C. Xu, W. Pen, Design and Evaluation of a Novel Guidewire Navigation Robot. IEEE International Conference on Mechatronics and Automation. 431-436 (2016)

  • X. Bao, S. Guo, N. Xiao, Y. Zhao, C. Zhang, C. Yang, R. Shen, Toward cooperation of catheter and guidewire for remote-controlled vascular interventional robot, IEEE International Conference on Mechatronics and Automation, 422-426 (2017)

  • X. Bao, S. Guo, N. Xiao, Y. Li, C. Yang, Y. Jiang, A Cooperation of Catheters and Guidewires-based Novel Remote-Controlled Vascular Interventional Robot. Biomed. Microdevices (2018). https://doi.org/10.1007/s10544-018-0261-0

  • R. Beyar, L. Gruberg, D. Deleanu, A. Roguin, Y. Almagor, S. Cohen, G. Kumar, T. Wenderow, Remote-control percutaneous coronary interventions: concept, validation, and first-in-humans pilot clinical trial. J. Am. Coll. Cardiol. 47(2), 296–300 (2006)

    Article  Google Scholar 

  • G. Bian, X. Xie, Z. Feng, Z. Hou, P. Wei, L. Cheng, M. Tan, An enhanced dual-finger robotic hand for catheter manipulating in vascular intervention: A preliminary study. IEEE International Conference on Information and Automation. 356–361 (2014)

  • L. Cercenelli, E. Marcelli, G. Plicchi, Initial experience with a telerobotic system to remotely navigate and automatically reposition standard Steerable EP Catheters. ASAIO J. 53(5), 523–529 (2007)

    Article  Google Scholar 

  • M. Faddis, W. Blume, J. Finney, A. Hall, J. Rauch, J. Sell, K. Bae, M. Talcott, B. Lindsay, Novel, magnetically guided catheter for endocardial mapping and radiofrequency catheter ablation. Circulation 106(23), 2980–2985 (2002)

    Article  Google Scholar 

  • Z. Feng, G. Bian, X. Xie, Z. Hou, J. Hao, Design and evaluation of a bio-inspired robotic hand for percutaneous coronary intervention. IEEE International Conference on Robotics and Automation. 5338-5343 (2015)

  • Y. Fu, A. Gao, H. Liu, K. Li, Z. Liang, Development of a novel robotic catheter system for endovascular minimally invasive surgery. IEEE/ICME International Conference on Complex Medical Engineering, 400–405 (2011)

  • Y. Fu, H. Liu, S. Wang, W. Deng, X. Li, Z. Liang, Skeleton-based active catheter navigation. Int J Med Rob Comput Assisted Surg. 5(2), 125–135 (2009)

    Article  Google Scholar 

  • J. Granada, J. Delgado, M. Uribe, A. Fernandez, G. Blanco, M. Leon, G. Weisz, First-in-Human Evaluation of a Novel Robotic-Assisted Coronary Angioplasty System. J. Am. Coll. Cardiol. Intv. 4(4), 460–465 (2011)

    Article  Google Scholar 

  • J. Guo, S. Guo, Y. Yu, Design and characteristics evaluation of a novel teleoperated robotic catheterization system with force feedback for vascular interventional surgery. Biomed. Microdevices 18(5), 76–92 (2016a)

    Article  Google Scholar 

  • J. Guo, S. Guo, Design and characteristics evaluation of a novel VR based robot assisted catheterization training system with force feedback for vascular interventional surgery. Microsyst. Technol. 23(8), 1–10 (2016b)

    Google Scholar 

  • J. Guo, X. Jin, S. Guo, Study on the operational safety of the vascular interventional surgical robotic system. Micromachines 9(3), 1272–1288 (2018)

    Google Scholar 

  • S. Guo, T. Fukuda, K. Kosuge, F. Arai, K. Oguro, M. Negoro, Micro catheter system with active guide wire. IEEE International Conference on Robotics and Automation. 79-84 (1995)

  • S. Guo, H. Yamaji, Y. Kita, K. Izuishi, T. Tamiya, A novel active catheter system for ileus treatment. IEEE International Conference on Automation & Logistics, 67–72 (2008)

  • J. Jayender, M. Azizian, R. Patel, Autonomous Image-Guided Robot-Assisted Active Catheter Insertion. IEEE Trans. Robot. 24(4), 858–871 (2008)

    Article  Google Scholar 

  • J. Jayender, R. Patel,a S. Nikumb, Robot-assisted catheter insertion using hybrid impedance control. IEEE International Conference on Robotics and Automation. 607-612 (2006)

  • C. Jr, Robotic-assisted percutaneous coronary intervention filling an unmet need. J. Cardiovasc. Transl. Res. 5(1), 62–66 (2012)

    Article  Google Scholar 

  • P. Kanagaratnam, M. Koawing, D. Wallace, A. Goldenberg, N. Peters, D. Davies, Experience of robotic catheter ablation in humans using a novel remotely steerable catheter sheath. J. Interv. Card. Electrophysiol. 21(1), 19–26 (2008)

    Article  Google Scholar 

  • SB. Kesner, RD. Howe, Design and control of motion compensation cardiac catheters. IEEE International Conference on Robotics and Automation, 1059–1065 (2010)

  • SB. Kesner, RD. Howe, Force control of flexible catheter robots for beating heart surgery. IEEE International Conference on Robotics and Automation, 1589–1594 (2011)

  • E. Khan, W. Frumkin, G. Ng, S. Neelagaru, F. Abi-Samra, J. Lee, M. Giudici, D. Gohn, R. Winkle, J. Sussman, B. Knight, A. Berman, H. Calkins, First experience with a novel robotic remote catheter system: AmigoTM mapping trial. J. Interv. Card. Electrophysiol. 37(2), 121–129 (2013)

    Article  Google Scholar 

  • L. Klein, D. Miller, S. Balter, W. Laskey, D. Haines, A. Norbash, M. Mauro, J. Goldstein, Occupational health hazards in the interventional laboratory: time for a safer environment. Catheter Cardiovasc Interv. 73(3), 432–438 (2009)

    Article  Google Scholar 

  • E. Marcelli, L. Cercenelli, G. Plicchi, A novel telerobotic system to remotely navigate standard electrophysiology catheters. Comput. Cardiol. 35, 137–140 (2008)

    Google Scholar 

  • C. Meng, J. Zhang, D. Liu, B. Liu, F. Zhou, A remote-controlled vascular interventional robot: system structure and image guidance. Int J Med Rob Comput Assisted Surg. 9(2), 230–239 (2013)

    Article  Google Scholar 

  • J. Park, J. Choi, H. Pak, S. Song, J. Lee, Y. Park, S. Shin, K. Sun, Development of a force-reflecting robotic platform for cardiac catheter navigation. Artif. Organs 34(11), 1034–1039 (2010)

    Article  Google Scholar 

  • C. Riga, C. Bicknell, A. Rolls, N. Cheshire, M. Hamady, Robot-assisted fenestrated endovascular aneurysm repair (FEVAR) using the Magellan system. J Vasc Interv Radiol. 24(2), 191–196 (2013)

    Article  Google Scholar 

  • J. Shen, S. Li, D. Chen, Y. Yan, Design and experiment of guide wire tele-manipulation system based on laser mouse sensor. Chinese J Med Inst. 36(1), 32–35 (2012)

    Google Scholar 

  • G. Srimathveeravalli, T. Kesavadas, X. Li, Design and fabrication of a robotic mechanism for remote steering and positioning of interventional devices. Int J Med Rob Comput Assisted Surg. 6(2), 160–170 (2010)

    Google Scholar 

  • M. Tanimoto, F. Arai, T. Fukuda, H. Iwata, K. Itoigawa, Y. Gotoh, M. Hashimoto, M. Negoro, Micro force sensor for intravascular neurosurgery and in vivo experiment. IEEE International Conference on Robotics and Automation, 504–509 (1997)

  • M. Tanimoto, F. Arai, T. Fukuda, K. Itoigawa, M. Hashimoto, I. Takahashi, M. Negoro, Telesurgery System for Intravascular Neurosurgery. International Conference on Medical Image Computing and Computer-Assisted Intervention. 29–39 (2000)

  • M. Tavallaei, D. Gelman, M. Lavdas, A. Skanes, D. Jones, J. Bax, M. Drangova, Design, Development and evaluation of a compact telerobotic catheter navigation system. Int J Med Rob Comput Assisted Sur 12(3), 442–452 (2016)

    Article  Google Scholar 

  • R. Taylor, D. Stoiariovici, Medical robotics in computer-integrated surgery. IEEE Trans Rob Autom 19(5), 765–781 (2003)

    Article  Google Scholar 

  • C. Tercero, S. Ikeda, T. Uchiyama, T. Fukuda, F. Arai, Y. Okada, Y. Ono, R. Hattori, T. Yamamoto, M. Negoro, I. Takahashi, Autonomous catheter insertion system using magnetic motion capture sensor for endovascular surgery. Int J Med Rob Comput Assisted Surg 3(1), 52–58 (2010)

    Article  Google Scholar 

  • Y. Thakur, D.W. Holdsworth, M. Drangova, Characterization of catheter dynamics during percutaneous transluminal catheter procedures. IEEE Trans. Biomed. Eng. 56(8), 2140–2143 (2009a)

    Article  Google Scholar 

  • Y. Thakur, J. Bax, D. Holdsworth, M. Drangova, Design and performance evaluation of a remote catheter navigation system. IEEE Trans. Biomed. Eng. 56(7), 1901–1908 (2009b)

    Article  Google Scholar 

  • T. Wang, D. Zhang, D. Liu, Remote-controlled vascular interventional surgery robot. Int J Med Rob Comput Assisted Surg. 6(2), 194–201 (2010)

    Google Scholar 

  • Y. Wang, S. Guo, T. Tamiya, H. Hirata, H. Ishihara, X. Yin, A virtual-reality simulator and force sensation combined catheter operation training system and its preliminary evaluation. Int J Med Rob Comput Assisted Surg (2016). https://doi.org/10.1002/rcs.e1769

  • M. Whitby, C. Martin, A study of the distribution of dose across the hands of interventional radiologists and cardiologists. Br. J. Radiol. 78(927), 219–229 (2005)

    Article  Google Scholar 

  • N. Xiao, J. Guo, S. Guo, T. Tamiya, A robotic catheter system with real-time force feedback and monitor. Australas Phys Eng Sci Med. 35(3), 283–289 (2012)

    Article  Google Scholar 

  • N. Xiao, L. Shi, B. Gao, S. Guo, T. Tamiya, Clamping force evaluation for a robotic catheter navigation system. Neurosci Biomed Eng. 1(2), 141–145 (2013)

    Article  Google Scholar 

  • N. Xiao, S. Guo, J. Guo, X. Xiao, Development of a kind of robotic catheter manipulation system. IEEE International Conference on Robotics and Biomimetics. 32-37 (2008)

  • X. Yin, S. Guo, N. Xiao, T. Tamiya, Safety operation consciousness realization of a MR fluids-based novel haptic interface for teleoperated catheter minimally invasive neuro surgery. IEEE/ASME Trans. Mechatronics. 21(2), 1043–1054 (2016)

    Article  Google Scholar 

  • N. Zakaria, T. Komeda, C. Low, K. Mahadhir, Development of foolproof catheter guide system based on mechatronic design. Prod. Eng. 7(1), 81–90 (2013)

    Article  Google Scholar 

  • L. Zhang, S. Guo, H. Yu, Y. Song, T. Tamiya, H. Hirata, H. Ishihara, Design and performance evaluation of collision protection-based safety operation for a haptic robot-assisted catheter operating system. Biomed. Microdevices (2018). https://doi.org/10.1007/s10544-018-0266-8

  • P. Zhang, S. Yu, Y. Hu, X. Ma, J. Zhang, Design of a novel master-slave robotic system for minimally intravascular invasive surgery. IEEE International Conference on Mechatronics and Automation, 259–264 (2011)

Download references

Acknowledgements

This research is supported by National High-tech Research and Development Program (863 Program) of China (2015AA043202), and National Key Research and Development Program of China (2017YFB1304401).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shuxiang Guo or Nan Xiao.

Ethics declarations

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bao, X., Guo, S., Xiao, N. et al. Operation evaluation in-human of a novel remote-controlled vascular interventional robot. Biomed Microdevices 20, 34 (2018). https://doi.org/10.1007/s10544-018-0277-5

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10544-018-0277-5

Keywords

Navigation