Biomedical Microdevices

, 20:10 | Cite as

Development of micro mechanical device having two-dimensional array of micro chambers for cell stretching

Article
  • 137 Downloads

Abstract

This paper presents a novel cell stretching micro device having two-dimensional array of micro chambers. It enables an in situ time-lapse observation of stretched cell by using an optical microscope with high measurement efficiency. The presented device consists of a cell culture dish and the array of micro chambers made of silicone elastomer and extension structures made of photocurable resin, and is fabricated with MEMS technology. The fabrication process of the thin micro chamber array combines photoresist mold and lift-off process based on conventional photolithography. The fabricated device has 134 micro chambers in 5μm or less thickness. It was demonstrated that the fabricated micro device could be used to make in-situ time-lapse observation of cell responses to stretching under optical microscopy. In addition, the influence of the chamber thickness to the quality of the microscope image observed was evaluated. It is confirmed that the proposed device having two-dimensional array of the thin micro chambers makes it possible to observe cell response for stretch stimuli with high quality and efficiency.

Keywords

Cell stretching Mechanical stimulation Cellular response Thin micro chamber Two-dimensional array 

References

  1. C.T. Brighton, B. Strafford, S.B. Gross, D.F. Leatherwood, J.L. Williams, S.R. Pollack, J. Bone Joint Surg. Am. 73, 320 (1991)CrossRefGoogle Scholar
  2. M. Chiquet, A.S. Renedo, F. Huber, M. Flück, Matrix Biol. 22, 73 (2003)CrossRefGoogle Scholar
  3. F. Guilak, D.M. Cohen, B.T. Estes, J.M. Gimble, W. Liedtke, C.S. Chen, Cell Stem Cell 5, 17 (2009).  https://doi.org/10.1016/j.stem.2009.06.016 CrossRefGoogle Scholar
  4. Y. Iwadate, S. Yumura, BioTechniques 47, 757 (2009).  https://doi.org/10.2144/000113217 CrossRefGoogle Scholar
  5. H. Kamble, M.J. Barton, M. Jun, S. Park, N.-T. Nguyen, Lab Chip 16, 3193 (2016)CrossRefGoogle Scholar
  6. D. Kaspar, W. Seidl, C. Neidlinger-Wilke, A. Ignatius, L. Claes, J. Biomech. 33, 45 (2000)CrossRefGoogle Scholar
  7. H.J. Kim, D. Huh, G. Hamilton, D.E. Ingber, Lab Chip 12, 2165 (2012).  https://doi.org/10.1039/c2lc40074j CrossRefGoogle Scholar
  8. C.-F. Lee, C. Haase, S. Deguchi, R. Kaunas, Biochem. Biophys. Res. Commun. 401, 344 (2010).  https://doi.org/10.1016/j.bbrc.2010.09.046 CrossRefGoogle Scholar
  9. A. Matsugaki, N. Fujiwara, T. Nakano, Acta Biomater. 9, 7227 (2013)CrossRefGoogle Scholar
  10. Y. Mitsuoka, A. Tsukamoto, S. Iwayoshi, K.S. Furukawa, T. Ushida, J. Biomech. Sci. Eng. 7, 188 (2012).  https://doi.org/10.1299/jbse.7.188 CrossRefGoogle Scholar
  11. V. Mukundan, B.L. Pruitt, J. Microelectromech. Syst. 18, 405 (2009)CrossRefGoogle Scholar
  12. C. Neidlinger-Wilke, E.S. Grood, J.H.-C. Wang, R.A. Brand, L. Claes, J. Orthop. Res. 19, 286 (2001)CrossRefGoogle Scholar
  13. C.J. O'Callaghan, B. Williams, Hypertension 36, 319 (2000).  https://doi.org/10.1161/01.HYP.36.3.319 CrossRefGoogle Scholar
  14. M.N. Richard, J.F. Deniset, A.L. Kneesh, D. Blackwood, G.N. Pierce, J. Biol. Chem. 282, 23081 (2007).  https://doi.org/10.1074/jbc.M703602200 CrossRefGoogle Scholar
  15. K. Sato, S. Kamada, K. Minami, Int. J. Mech. Sci. 52, 251 (2010)CrossRefGoogle Scholar
  16. K. Sato, Y. Ogawa, S. Ito, S. Fujisawa, K. Minami, J Biomech Sci Eng 10 (2015).  https://doi.org/10.1299/jbse.15-00242
  17. N. Scuor, P. Gallina, H.V. Panchawagh, R.L. Mahajan, O. Sbaizero, V. Sergo, Biomed. Microdevices 8, 239 (2006).  https://doi.org/10.1007/s10544-006-8268-3 CrossRefGoogle Scholar
  18. D.B. Serrell, J. Law, A.J. Slifka, R.L. Mahajan, D.S. Finch, Biomed. Microdevices 10, 883 (2008).  https://doi.org/10.1007/s10544-008-9202-7 CrossRefGoogle Scholar
  19. Y. Shao, X. Tan, R. Novitski, M. Muqaddam, P. List, L. Williamson, J. Fu, A.P. Liu, Rev Sci Instrum. 84, 114304 (2013).  https://doi.org/10.1063/1.4832977 CrossRefGoogle Scholar
  20. C.P. Ursekar, S.-K. Teo, H. Hirata, I. Harada, K.-H. Chiam, Y. Sawada, PLoS One 9, e90665 (2014).  https://doi.org/10.1371/journal.pone.0090665 CrossRefGoogle Scholar
  21. V. Vogel, M. Sheetz, Nat Rev Mol Cell Biol. 7, 265 (2006)CrossRefGoogle Scholar
  22. W. Zheng, B. Jiang, D. Wang, W. Zhang, Z. Wang, X. Jiang, Lab Chip 12, 3441 (2012).  https://doi.org/10.1039/c2lc40173h CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018
corrected publication February/2018

Authors and Affiliations

  1. 1.Graduate School of Sciences and Technology for Innovation, Yamaguchi UniversityUbeJapan
  2. 2.Graduate School of Technology, Industrial and Social Sciences, Tokushima UniversityTokushimaJapan

Personalised recommendations