Advertisement

Molybdenum coated SU-8 microneedle electrodes for transcutaneous electrical nerve stimulation

  • Ramin Soltanzadeh
  • Elnaz Afsharipour
  • Cyrus Shafai
  • Neda Anssari
  • Behzad Mansouri
  • Zahra Moussavi
Article
Part of the following topical collections:
  1. Biomedical MicroNeedles

Abstract

Electrophysiological devices are connected to the body through electrodes. In some applications, such as nerve stimulation, it is needed to minimally pierce the skin and reach the underneath layers to bypass the impedance of the first layer called stratum corneum. In this study, we have designed and fabricated surface microneedle electrodes for applications such as electrical peripheral nerve stimulation. We used molybdenum for microneedle fabrication, which is a biocompatible metal; it was used for the conductive layer of the needle array. To evaluate the performance of the fabricated electrodes, they were compared with the conventional surface electrodes in nerve conduction velocity experiment. The recorded signals showed a much lower contact resistance and higher bandwidth in low frequencies for the fabricated microneedle electrodes compared to those of the conventional electrodes. These results indicate the electrode-tissue interface capacitance and charge transfer resistance have been increased in our designed electrodes, while the contact resistance decreased. These changes will lead to less harmful Faradaic current passing through the tissue during stimulation in different frequencies. We also compared the designed microneedle electrodes with conventional ones by a 3-dimensional finite element simulation. The results demonstrated that the current density in the deep layers of the skin and the directivity toward a target nerve for microneedle electrodes were much more than those for the conventional ones. Therefore, the designed electrodes are much more efficient than the conventional electrodes for superficial transcutaneous nerve stimulation purposes.

Keywords

Electrophysiological devices Microneedle patches Electrode/tissue interface Peripheral nerve stimulation 

Notes

Acknowledgements

This study was funded by CMC Microsystems (MNT # 3923). The fabrication process was done in Nano-Systems Fabrication Laboratory at the University of Manitoba. The authors declare no commercial or financial conflict of interest.

References

  1. T.A. Anhoj, A.M. Jorgensen, D.A. Zauner, J. Hübner, J. Micromechanical Microeng. 16, 1819 (2006)CrossRefGoogle Scholar
  2. S. Aoyagi, H. Izumi, Y. Isono, M. Fukuda, H. Ogawa, Sensors Actuators A Phys. 139, 293–302 (2007)CrossRefGoogle Scholar
  3. A.J. Bard, L.R. Faulkner, Electrochem. Methods, 2nd edn. (Wiley, New York, 2001)Google Scholar
  4. H. Becker, U. Heim, Sensors Actuators A Phys. 83, 130–135 (2000)CrossRefGoogle Scholar
  5. L. Beckmann, C. Neuhaus, G. Medrano, N. Jungbecker, M. Walter, T. Gries, et al., Physiol. Meas. 31, 233 (2010)CrossRefGoogle Scholar
  6. M.B. Chan-Park, J. Zhang, Y. Yan, C. Yue, Sensors Actuators B Chem. 101, 175–182 (2004)CrossRefGoogle Scholar
  7. J.-C. Chiou, L.-W. Ko, C.-T. Lin, C.-T. Hong, T.-P. Jung, S.-F. Liang, J.-L. Jeng, Using novel MEMS EEG sensors in detecting drowsiness application, in Biomedical circuits and systems conference, 2006. BioCAS 2006 (IEEE, 2006), 33–36 (2006)Google Scholar
  8. Y.A. Chizmadzhev, A.V. Indenbom, P.I. Kuzmin, S.V. Galichenko, J.C. Weaver, R.O. Potts, J. Biophysics. 74, 843–856 (1998)CrossRefGoogle Scholar
  9. S.F. Cogan, Annu. Rev. Biomed. Eng. 10, 275–309 (2008)CrossRefGoogle Scholar
  10. W. Dai, K. Lian, W. Wang, J. Microsyst. Technol. 11, 526–534 (2005)CrossRefGoogle Scholar
  11. T.P. DeMonte, P.D. Gadsby, P.F. Meyer, M.L. Joy, Measurement of edge effects in automatic external defibrillation electrodes using current density imaging, in Proc. 13th Annu. ISMRM Int. Conf. (2005)Google Scholar
  12. P. Griss, P. Enoksson, H.K. Tolvanen-Laakso, P. Merilainen, S. Ollmar, G. Stemme, J. Microelectromech. Syst. 10, 10–16 (2001)CrossRefGoogle Scholar
  13. P. Griss, H.K. Tolvanen-Laakso, P. Merilainen, G. Stemme, IEEE Trans. Biomed. Eng. 49, 597–604 (2002)CrossRefGoogle Scholar
  14. G.S. Guvanasen, L. Guo, R.J. Aguilar, A.L. Cheek, C.S. Shafor, et al., IEEE Trans. Neural Eng. Rehab. (2016).  https://doi.org/10.1109/TNSRE.2016.2629461
  15. M. Han, D.-H. Hyun, H.-H. Park, S.S. Lee, C.-H. Kim, C. Kim, J. Micromechanical Microeng. 17, 1184 (2007)CrossRefGoogle Scholar
  16. C.Y. Jin, M.H. Han, S.S. Lee, Y.H. Choi, Biomed. Microdevices 11, 1195–1203 (2009)CrossRefGoogle Scholar
  17. T. Keller, A. Kuhn, J. Autom. Control. 18, 35–45 (2008)CrossRefGoogle Scholar
  18. K. Kim, D.S. Park, H.M. Lu, W. Che, K. Kim, J.-B. Lee, et al., J. Micromechanical Microeng. 14, 597 (2004)CrossRefGoogle Scholar
  19. A. Kuhn, T. Keller, M. Lawrence, M. Morari, J. Medical & Biological Engineering & Computing. 47, 279 (2009)CrossRefGoogle Scholar
  20. C. Liu, Adv. Mater. 19, 3783–3790 (2007)CrossRefGoogle Scholar
  21. T. Maeda, N. Arakawa, M. Takahashi, Y. Aizu, J. Optial Rev. 3, 223–229 (2010)CrossRefGoogle Scholar
  22. M. Matteucci, R. Carabalona, M. Casella, E. Di Fabrizio, F. Gramatica, M. Di Rienzo, et al., Microelectron. Eng. 84, 1737–1740 (2007)CrossRefGoogle Scholar
  23. E. McAdams, in Integrated Circuits and Systems, ed. By H. J. Yoo, C. van Hoof (Springer, New York, 2011), p. 31Google Scholar
  24. E. McAdams, J. Jossinet, EMBS Conf. 13, 1728–1729 (1991)Google Scholar
  25. E. McAdams, A. Lackermeier, J. McLaughlin, D. Macken, J. Jossinet, Biosens. Bioelectron. 10, 67–74 (1995)CrossRefGoogle Scholar
  26. D.B. McCreery, W.F. Agnew, T.G. Yuen, L. Bullara, IEEE Trans. Biomed. Eng. 37, 996–1001 (1990)CrossRefGoogle Scholar
  27. D.R. Merrill, M. Bikson, J.G. Jefferys, J. Neurosci. Methods 141, 171–198 (2005)CrossRefGoogle Scholar
  28. K.L. Mittal, Adhesion measurement of thin films. ElectroComponent Science and Technology 3(1), 21–42 (1976)Google Scholar
  29. H. W. Moses, J. C. Mullin, A practical guide to cardiac pacing. Lippincott Williams & Wilkins (2007)Google Scholar
  30. K.V. Nemani, K.L. Moodie, J.B. Brennick, A. Su, B. Gimi, J. Mater. Sci. Eng. 33, 4453–4459 (2013)CrossRefGoogle Scholar
  31. A. Norlin, J. Pan, C. Leygraf, Biomol. Eng. 19, 67–71 (2002)CrossRefGoogle Scholar
  32. T.I. Oh, H. Koo, K.H. Lee, S.M. Kim, J. Lee, S.W. Kim, et al., Physiol. Meas. 29, 295 (2008)CrossRefGoogle Scholar
  33. J.H. Park, Y.K. Yoon, S.O. Choi, M.R. Prausnitz, M.G. Allen, IEEE Trans. Biomed. Eng. 54, 903–913 (2007)CrossRefGoogle Scholar
  34. V. Parker, J. Warman Chardon, J. Mills, C. Goldsmith, P. R. Bourque, (2016).  https://doi.org/10.1155/2016/6796270
  35. J.N. Patel, B. Kaminska, B.L. Gray, B.D. Gates, J. Micromechanical Microeng. 18, 095028 (2008)CrossRefGoogle Scholar
  36. A.M. Ribeiro, T.H. Flores-Sahagun, R.C. Paredes, J. Mater. Sci. 51, 2806–2816 (2016)CrossRefGoogle Scholar
  37. M. Sawan, F. Mounaim, G. Lesbros, Analog Integr. Circ. Sig. Process 55, 103–114 (2008)CrossRefGoogle Scholar
  38. M. Schaldach, M. Hubmann, A. Weikl, R. Hardt, Pacing Clin. Electrophysiol. 13, 1891–1895 (1990)CrossRefGoogle Scholar
  39. T.M. Suhonen, J.A. Bouwstra, A. Urtti, J. Control. Release 59, 149–161 (1999)CrossRefGoogle Scholar
  40. Y.K. Yoon, J.H. Park, M.G. Allen, J. Microelectromech. Syst. 15, 1121–1130 (2006)CrossRefGoogle Scholar
  41. L. Yu, F. Tay, D. Guo, L. Xu, K. Yap, Sensors Actuators A Phys. 151, 17–22 (2009)CrossRefGoogle Scholar
  42. D. Zhou, R. Greenberg, 25th EMBS Conf. (2003).  https://doi.org/10.1109/IEMBS.2003.1279831

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Biomedical Engineering, Graduate ProgramUniversity of ManitobaWinnipegCanada
  2. 2.Electrical and Computer Engineering DepartmentUniversity of ManitobaWinnipegCanada
  3. 3.Section of Neurology, Department of Internal MedicineUniversity of ManitobaWinnipegCanada

Personalised recommendations