Biomedical Microdevices

, 19:13 | Cite as

Investigation of osteogenic activity of primary rabbit periosteal cells stimulated by multi-axial tensile strain

Article
  • 168 Downloads

Abstract

Periosteum–derived cells was indicated to respond to mechanical force and have stem cell potential capable of differentiating into multiple tissue. Investigation of osteogenic activity under mechanical stimulation is important to understand the therapeutic conditions of fracture healing. In this work, a cell culture platform was developed for respectively providing isotropic and anisotropic axial strain. Primary rabbit periosteal cells were isolated and cultured in the chamber. Multi-axial tensile strain was received and osteogenic activity was investigated by mRNA expressions of CBFA1 and OPN. The highest mRNA expression was found in moderate strain (5-8%) under anisotropic axial strain. These results provided important foundation for further in vivo studies and development of tailor-made stretching rehabilitation equipment.

Keywords

Periosteal cells Osteogenic activity Orthopedics Rehabilitation 

Notes

Acknowledgements

This work was supported by Chang Gung Memorial Hospital, Linkou branch, Taiwan (Project no. BMRPC05).

References

  1. C. Banerjee, L.R. McCabe, J.Y. Choi, S.W. Hiebert, J.L. Stein, G.S. Stein, J.B. Lian, Runt homology domain proteins in osteoblast differentiation: AML3/CBFA1 is a major component of a bone-specific complex. J. Cell. Biochem. 66, 1–8 (1997)CrossRefGoogle Scholar
  2. G. Bartalena, R. Grieder, R.I. Sharma, T. Zambelli, R. Muff, J.G. Snedeker, A novel method for assessing adherent single-cell stiffness in tension: Design and testing of a substrate-based live cell functional imaging device. Biomed. Microdevices 13, 291–301 (2011)CrossRefGoogle Scholar
  3. M. Bu, T. Melvin, G. Ensell, J.S. Wilkinson, A.G.R. Evans, Design and theoretical evaluation of a novel microfluidic device to be used for PCR. J. Micromech. Microeng. 13, S125–S130 (2003)CrossRefGoogle Scholar
  4. C. De Bari, F. Dell'Accio, F.P. Luyten, Human periosteum-derived cells maintain phenotypic stability and chondrogenic potential throughout expansion regardless of donor age. Arthritis Rheum. 44, 85–95 (2001)CrossRefGoogle Scholar
  5. C. De Bari, F. Dell'Accio, J. Vanlauwe, J. Eyckmans, I.M. Khan, C.W. Archer, E.A. Jones, D. McGonagle, T.A. Mitsiadis, C. Pitzalis, F.P. Luyten, Mesenchymal multipotency of adult human periosteal cells demonstrated by single-cell lineage analysis. Arthritis Rheum. 54, 1209–1221 (2006)CrossRefGoogle Scholar
  6. D.T. Denhardt, M. Noda, Osteopontin expression and function: Role in bone remodeling. J. Cell. Biochem. Suppl. 30-31, 92–102 (1998)CrossRefGoogle Scholar
  7. X. Gao, X. Zhang, H. Tong, B. Lin, J. Qin, A simple elastic membrane-based microfluidic for the proliferation and differentiation of mesenchymal stem cells under tensile stress. Electrophoresis 32, 3431–3436 (2011)CrossRefGoogle Scholar
  8. W.H. Grover, R.H.C. Ivester, E.C. Jensen, R.A. Mathies, Development and multiplexed control of latching pneumatic valves using microfluidic logical structures. Lab Chip 6, 623–631 (2006)CrossRefGoogle Scholar
  9. H. Harada, S. Tagashira, M. Fujiwara, S. Ogawa, T. Katsumata, A. Yamaguchi, T. Komori, M. Nakatsuka, Cbfa1 isoforms exert functional differences in osteoblast differentiation. J. Biol. Chem. 274, 6972–6978 (1999)CrossRefGoogle Scholar
  10. M.D. Hoffman, D.S. Benoit, Emulating native periosteum cell population and subsequent paracrine factor production to promote tissue engineered periosteum-mediated allograft healing. Biomaterials 52, 426–440 (2015)CrossRefGoogle Scholar
  11. M. Ishijima, S.R. Rittling, T. Yamashita, K. Tsuji, H. Kurosawa, A. Nifuji, D.T. Denhardt, M. Noda, Enhancement of osteoclastic bone resorption and suppression of osteoblastic bone formation in response to reduced mechanical stress do not occur in the absence of osteopontin. J. Exp. Med. 193, 399–404 (2001)CrossRefGoogle Scholar
  12. T. Kanno, T. Takahashi, W. Ariyoshi, T. Tsujisawa, M. Haga, T. Nishihara, Tensile mechanical strain up-regulates Runx2 and osteogenic factor expression in human periosteal cells: Implications for distraction osteogenesis. J. Oral Maxillofacial Surg. 63, 499–504 (2005)CrossRefGoogle Scholar
  13. G. Karsenty, Role of Cbfa1 in osteoblast differentiation and function. Semin. Cell Dev. Biol. 11, 343–346 (2000)CrossRefGoogle Scholar
  14. B. Kern, J. Shen, M. Starbuck, G. Karsenty, Cbfa1 contributes to the osteoblast-specific expression of type I collagen genes. J. Biol. Chem. 276, 7101–7107 (2001)CrossRefGoogle Scholar
  15. Y.C. Kim, J.H. Kang, S.J. Park, E.S. Yoon, J.K. Park, Microfluidic biomechanical device for compressive cell stimulation and lysis. Sensors Actuators B Chem. 128, 108–116 (2007)CrossRefGoogle Scholar
  16. Y.C. Kim, S.J. Park, J.K. Park, Biomechanical analysis of cancerous and normal cells based on bulge generation in a microfluidic device. Analyst 113, 1432–1439 (2008)CrossRefGoogle Scholar
  17. I.S. Kim, Y.M. Song, T.H. Cho, J.Y. Kim, F.E. Weber, S.J. Hwang, Synergistic action of static stretching and BMP-2 stimulation in the osteoblast differentiation of C2C12 myoblasts. J. Biomech. 42, 2721–2727 (2009)CrossRefGoogle Scholar
  18. H. Kobayashi, Y. Gao, C. Ueta, A. Yamaguchi, T. Komori, Multilineage differentiation of Cbfa1-deficient calvarial cells in vitro. Biochem. Biophys. Res. Commun. 273, 630–636 (2000)CrossRefGoogle Scholar
  19. J. Kong, L. Jiang, X. Su, J. Qin, Y. Du, B. Lin, Integrated microfluidic immunoassay for the rapid determination of clenbuterol. Lab Chip 9, 1541–1547 (2009)CrossRefGoogle Scholar
  20. Y. Koshihara, M. Kawamura, S. Endo, C. Tsutsumi, H. Kodama, H. Oda, S. Higaki, Establishment of human osteoblastic cells derived from periosteum in culture. In Vitro Cell Dev. Biol. 25, 37–43 (1989)CrossRefGoogle Scholar
  21. G.D. Krischak, A. Janousek, S. Wolf, P. Augat, L. Kinzi, L.E. Claes, Effects of one-plane and two-plane external fixation on sheep osteotomy healing and complications. Clin. Biomech. 17, 470–476 (2002)CrossRefGoogle Scholar
  22. W.J. Landis, R. Jacquet, E. Lowder, M. Enjo, Y. Wada, N. Isogai, Tissue engineering models of human digits: Effect of periosteum on growth plate cartilage development. Cells Tissues Organs 189, 241–244 (2009)CrossRefGoogle Scholar
  23. K.F. Lei, Microfluidic systems for diagnostic applications: A review. JALA 17, 330–347 (2012)Google Scholar
  24. K.F. Lei, K.H. Chen, Y.C. Chang, Protein binding reaction enhanced by bi-directional flow driven by on-chip thermopneumatic actuator. Biomed. Microdevices 16, 325–332 (2014)CrossRefGoogle Scholar
  25. X. Liu, W. Chen, Y. Zhou, K. Tang, J. Zhang, Mechanical tension promotes the osteogenic differentiation of rat tendon-derived stem cell through the Wnt5a/Wnt5b/JNK signaling pathway. Cell. Physiol. Biochem. 36, 517–530 (2015)CrossRefGoogle Scholar
  26. B. Mckibbin, The biology of fracture healing in long bones. J. Bone Joint Surg. 60B, 150–162 (1978)Google Scholar
  27. M. Morinobu, M. Ishijima, S.R. Rittling, K. Tsuji, H. Yamamoto, A. Nifuji, D.T. Denhardt, M. Noda, Osteopontin expression in osteoblasts and osteocytes during bond formation under mechanical stress in the calvarial suture in vivo. J. Bone Miner. Res. 18, 1706–1715 (2003)CrossRefGoogle Scholar
  28. H. Nakahara, V.M. Goldberg, A.I. Caplan, Culture-expanded human periosteal-derived cells exhibit osteochondral potential in vivo. J. Orthop. Res. 9, 465–476 (1991a)CrossRefGoogle Scholar
  29. H. Nakahara, J.E. Dennis, S.P. Bruder, S.E. Haynesworth, D.P. Lennon, A.I. Caplan, In vitro differentiation of bone and hypertrophic cartilage from periosteal-derived cells. Exp. Cell Res. 195, 492–503 (1991b)CrossRefGoogle Scholar
  30. H.C. Pape, P.V. Giannoudis, K. Grimme, M. van Griensven, C. Krettek, Effects of intramedullary femoral fracture fixation: What is the impact of experimental studies in regards to the clinical knowledge? Shock 18, 291–300 (2002)CrossRefGoogle Scholar
  31. S.M. Perren, Evolution of the internal fixation of long bone fractures. J. Bone Joint Surg. 84B, 1093–1110 (2002)CrossRefGoogle Scholar
  32. M. Prince, C. Banerjee, A. Javed, J. Green, J.B. Lian, G.S. Stein, P.V.N. Bodine, B.S. Komm, Expression and regulation of Runx2/Cbfa1 and osteoblast phenotypic markers during the growth and differentiation of human osteoblasts. J. Cell. Biochem. 80, 424–440 (2001)CrossRefGoogle Scholar
  33. M. Samee, S. Kasugai, H. Kondo, K. Ohya, H. Shimokawa, S. Kuroda, Bone morphogenetic protein-2 (BMP-2) and vascular endothelial growth factor (VEGF) transfection to human periosteal cells enhances osteoblast differentiation and bone formation. J. Pharmacol. Sci. 108, 18–31 (2008)CrossRefGoogle Scholar
  34. M. Sato, E. Morii, T. Komori, H. Kawahata, M. Sugimoto, K. Terai, et al., Transcriptional regulation of osteopontin gene in vivo by PEBP2alphaA/CBFA1 and ETS1 in the skeletal tissues. Oncogene 17, 1517–1525 (1998)CrossRefGoogle Scholar
  35. N. Shimizu, Y. Ozawa, M. Yamaguchi, T. Goseki, K. Ohzeki, Y. Abiko, Induction of COX-2 expression by mechanical tension force in human periodontal ligament cells. J. Periodontol. 69, 670–677 (1998)CrossRefGoogle Scholar
  36. Z. Sun, B.C. Tee, Molecular variations related to the regional differences in periosteal growth at the mandibular ramus. Bone Biol. 294, 79–87 (2011)Google Scholar
  37. N. Suzuki, Y. Yoshimura, Y. Deyama, K. Suzuki, Y. Kitagawa, Mechanical stress directly suppresses osteoclast differentiation in RAW264.7 cells. Int. J. Mol. Med 21, 291–296 (2008)Google Scholar
  38. L. Tang, Z. Lin, Y.M. Li, Effects of different magnitudes of mechanical strain on osteoblasts in vitro. Biochem. Bioph. Res. Co. 344, 122–128 (2006)CrossRefGoogle Scholar
  39. T. Thorsen, S.J. Maerkl, S.R. Quake, Microfluidic large-scale integration. Science 298, 580–584 (2002)CrossRefGoogle Scholar
  40. E. Vogelin, N.F. Jones, J.I. Huang, J.H. Brekke, J.R. Lieberman, Healing of a critical-sized defect in the rat femur with use of a vascularized periosteal flap, a biodegradable matrix, and bone morphogenetic protein. J. Bone Joint Surg. Am. 87, 1323–1331 (2005)Google Scholar
  41. Z.S. Xiao, T.K. Hinson, L.D. Quarles, Cbfa1 isoform overexpression upregulates osteocalcin gene expression in non-osteoblastic and pre-osteoblastic cells. J. Cell. Biochem. 74, 596–605 (1999)CrossRefGoogle Scholar
  42. T. Yamaji, K. Ando, S. Wolf, P. Augat, L. Claes, The effect of micromovement on callus formation. J. Orthop. Sci. 6, 571–575 (2001)CrossRefGoogle Scholar
  43. T. Yamate, H. Mocharla, Y. Taguchi, J.U. Igietseme, S.C. Manolagas, E. Abe, Osteopontin expression by osteoclast and osteoblast progenitors in the murine bone marrow: Demonstration of its requirement for osteoclastogenesis and its increase after ovariectomy. Endocrinology 138, 3047–3055 (1997)Google Scholar
  44. P.G. Ziros, A.P. Gil, T. Georgakopoulos, I. Habeos, D. Kletsas, E.K. Basdra, A.G. Papavassiliou, The bone-specific transcriptional regulator Cbfa1 is a target of mechanical signals in osteoblastic cells. J. Biol. Chem. 277, 23934–23941 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Bone and Joint Research Center, Department of Orthopedic SurgeryChang Gung Memorial Hospital, Tooyuan BranchTaoyuanTaiwan
  2. 2.Graduate Institute of Medical MechatronicsChang Gung UniversityTaoyuanTaiwan
  3. 3.Department of Mechanical EngineeringChang Gung UniversityTaoyuanTaiwan
  4. 4.Department of Radiation OncologyChang Gung Memorial Hospital, Linkou BranchTaoyuanTaiwan

Personalised recommendations