Biomedical Microdevices

, 19:14 | Cite as

Measuring 3D-orthodontic actions to guide clinical treatments involving coil springs and miniscrews

  • Margherita Mencattelli
  • Elisa Donati
  • Pasqua Spinelli
  • Massimo Cultrone
  • Cesare Luzi
  • Daniele Cantarella
  • Cesare Stefanini


The understanding of the phenomena at the base of tooth movement, due to orthodontic therapy, is an ambitious topic especially with regard to the “optimal forces” able to move teeth without causing irreversible tissue damages. To this aim, a measuring platform for detecting 3D orthodontic actions has been developed. It consists of customized load cells and dedicated acquisition electronics. The force sensors are able to detect, simultaneously and independently of each other, the six orthodontic components which a tooth is affected by. They have been calibrated and then applied on a clinical case that required NiTi closed coil springs and miniscrews for the treatment of upper post-extraction spaces closure. The tests have been conducted on teeth stumps belonging to a plaster cast of the patient’s mouth. The load cells characteristics (sensor linearity and repeatability) have been analyzed (0.97 < R 2 < 1; 6.3*10 −6 % < STD < 8.8 %) and, on the basis of calibration data, the actions exerted on teeth have been determined. The biomechanical behavior of the frontal group and clinical interpretation of the results are discussed.


Biomechanics Orthodontics Force-moment measurements Customized load cells Superelastic coils 



The authors would like to thank Mr. Godfried Jansen Van Vuuren, for his advice and support in the fabrication of measurement set-up.


  1. A. Acar, U. Canyurek, M. Kocaaga, N. Erverdi, Angle. Orthod. 69, 2 (1999)Google Scholar
  2. K.L. Andersen, E.H. Pedersen, B. Melsen, Am. J. Orthod. Dentofacx. Orthop. 99, 5 (1991)Google Scholar
  3. H.M. Badawi, R.W. Toogood, J.P. Carey, G. Heo, P.W. Major, Am. J. Orthod. Dentofac.Orthop. 136, 4 (2009)CrossRefGoogle Scholar
  4. S.A. Badran, J.F. Orr, M. Stevenson, D.J. Burden, Eur. J. Orthodont. 25, 2 (2003)CrossRefGoogle Scholar
  5. D.J. Ballard, A.S. Jones, P. Petocz, M.A. Darendeliler, Am. J. Orthod. Dentofac. Orthop. 136, 1 (2009)CrossRefGoogle Scholar
  6. C. Bourauel, D. Drescher, M. Their, J. Biomed. Eng. 14, 5 (1992)CrossRefGoogle Scholar
  7. M.M.V. Bulcke, C.J. Burstone, R.C.L.R. Sachdeva, Am. J. Orthod. Dentofac. Orthop. 91, 5 (1987)Google Scholar
  8. D. Cantarella, L. Lombardo, H.B. Moon, G. Siciliani, Eur. J. Clin. Orthod. 2, 2 (2014)Google Scholar
  9. P.M. Cattaneo, M. Dalstra, B. Melsen, J. Dent. Res. 84, 5 (2005)CrossRefGoogle Scholar
  10. P.M. Cattaneo, M. Dalstra, B. Melsen, Orthod. Craniofac. Res. 12, 2 (2009)CrossRefGoogle Scholar
  11. J. Chen, I. Bulucea, T.R. Katona, S. Ofner, Am. Orthod. Dentofac. Orthop. 132, 2 (2007)CrossRefGoogle Scholar
  12. J. Chen, S.C. Isikbay, E.J. Brizendine, Angle. Orthod. 80, 4 (2010)Google Scholar
  13. G. Daljit, Orthodontics at a glance Wiley-Blackwell (2013)Google Scholar
  14. R.M. Faltin, K. Faltin, F.G. Sander, V.E. Arana Chavez, Eur. J. Orthodont. 23, 1 (2001)CrossRefGoogle Scholar
  15. D. Friedrich, N. Rosarius, G. Rau, P. Diedrich, J. Biomech. 32, 1 (1999)CrossRefGoogle Scholar
  16. L.M. Fuck, D. Drescher, J. Orofac. Orthop. 67, 1 (2006)CrossRefGoogle Scholar
  17. M. Hinterkausen, C. Bourauel, G. Siebers, A. Haase, D. Drescher, B. Nellen, Med. Eng. Phys. 20, 1 (1998)CrossRefGoogle Scholar
  18. K. Hodges, Concepts in nonsurgical periodontal therapy cengage learning (1998)Google Scholar
  19. M.H. Jung, T.W. Kim, J. Clin. Orthod. 42, 2 (2008a)Google Scholar
  20. M.H. Jung, T.W. Kim, J. Clin. Orthod. 42, 3 (2008b)Google Scholar
  21. T.R. Katona, S.C. Isikbay, J. Chen, Angle. Orthod. 84, 2 (2014)Google Scholar
  22. T. Konoo, Y.J. Kim, G.M. Gu, G.J. King, J. Dent. Res. 80, 2 (2001)CrossRefGoogle Scholar
  23. B. Kuo, K. Takakuda, H. Miyairi, J. Med, Dent. Sci. 48, 1 (2001)Google Scholar
  24. B. Lapatki, J. Bartholomeyczik, P. Ruther, I. Jonas, O. Paul, J. Dent, Res. 86, 1 (2007)Google Scholar
  25. N.J.P. McGuinness, A.N. Wilson, M.L. Jones, J. Middleton Eur, J. Orthodont. 13, 3 (1991)Google Scholar
  26. B. Melsen, Angle Orthod. 69, 2 (1999)Google Scholar
  27. M. Mencattelli, E. Donati, M. Cultrone, C. Stefanini, Biomedical Robotics and Biomechatronics (2014 5th IEEE RAS & EMBS International Conference on IEEE (2014)Google Scholar
  28. M. Mencattelli, E. Donati, M. Cultrone, C. Stefanini, Am. J. Orthod. Dentofac. Orthop. 148, 1 (2015)CrossRefGoogle Scholar
  29. N. Mittal, Z. Xia, J. Chen, K.T. Stewart, S.S. Liu, Angle Orthod. 83, 3 (2013)CrossRefGoogle Scholar
  30. A.N. Natali, P.G. Pavan, E.L. Carniel, C. Dorow, Connect. Tissue Res. 45, 4–5 (2004a)CrossRefGoogle Scholar
  31. A.N. Natali, P.G. Pavan, C. Scarpa, Dent. Mater. 20, 7 (2004b)CrossRefGoogle Scholar
  32. A.N. Natali, E.L. Carniel, P.C. Pavan, C. Bourauel, A. Ziegler, L. Keilig, J. Biomech. 40, 7 (2007)CrossRefGoogle Scholar
  33. G. Pietrzak, A. Curnier, J. Botsis, S. Scherrer, A. Wiscott, U. Belser, Comput. Method Biomec. 5, 2 (2002)CrossRefGoogle Scholar
  34. J.J. Pilon, A.M. Kuijpers-Jagtman, J.C. Maltha, Am. J. Orthod. Dentofac. Orthop. 110, 1 (1996)CrossRefGoogle Scholar
  35. J. Planert, H. Modler, K. Ludecke, M. Eger, Clin. Phys. Physiol. M. 13, 3 (1992)Google Scholar
  36. W. Proffit, in Biologic Basis of Orthodontic Therapy. in Contemporary Orthodontics, ed. by W.R. Proffit, H.W. Fields (Mosby, St Louis, 2000)Google Scholar
  37. K. Reitan, Angle Orthod. 34, 4 (1964)Google Scholar
  38. K. Reitan, A.M.J. Orthod, Dentofac. Orthop. 43, 1 (1957)CrossRefGoogle Scholar
  39. Y. Ren, J. Maltha, A.M. Kuijpers-Jagtman, Angle Orthod. 73, 1 (2003)Google Scholar
  40. S. Rues, B. Panchaphongsaphak, P. Gieschke, O. Paul, B. Lapatki, J. Biomech. 44, 10 (2011)CrossRefGoogle Scholar
  41. C. Sandstedt, Contributions to the theory of orthodontic tooth movement. Nordisk Tandläkaretidskrift 4 (1904)Google Scholar
  42. C. Sandstedt, Contributions to the theory of orthodontic tooth movement. Nordisk Tandläkaretidskrift. 1, 2 (1905)Google Scholar
  43. A.M. Schwarz, A.M.J. Orthod, Dentofac. Orthop. 18, 4 (1932)Google Scholar
  44. Y. Shi, C. Ren, W. Hao, M. Zhang, Y. Bai, Z. Wang, IEEE Sens. J. 12, 5 (2012)CrossRefGoogle Scholar
  45. M. Simon, L. Keilig, J. Schwarze, B.A. Jung, C. Bourauel, Am. J. Orthod. Dentofac. Orthop. 145, 6 (2014)CrossRefGoogle Scholar
  46. R. Smith, C.J. Burstone, Am. J. Orthod. Dentofac. Orthop. 85, 4 (1984)Google Scholar
  47. D.J. Solonche, C.J. Burstone, R.A. Vanderby, IEEE T. Bio-med Eng. 24, 6 (1997)Google Scholar
  48. J.Y. Tominaga, M. Tanaka, Y. Koga, C. Gonzales, M. Kobayashi, N. Yoshida, Angle Orthod. 79, 4 (2009)Google Scholar
  49. E.J. Van Leeuwen, J.C. Maltha, A.M. Kuijpers-Jagtsman Eur, J. Oral Sci. 107 (1999)Google Scholar
  50. A.D. Vardimon, D. Robbins, T. Brosh, Am. J. Orthod. Dentofac. Orthop. 138, 4 (2010)CrossRefGoogle Scholar
  51. F. Weiland, Eur. J. Orthodont. 25, 4 (2003)CrossRefGoogle Scholar
  52. B. Weltman, K.W. Vig, H.W. Fields, S. Shanker, E.E. Kaizar, Am. J. Orthod. Dentofac. Orthop. 137, 4 (2010)CrossRefGoogle Scholar
  53. Y. Yoon, W. Jeong, S. Jang, G. Hwang, K. Kim, Angle Orthod. 72, 6 (2002)Google Scholar
  54. N. Yoshida, Y. Koga, K. Kobayashi, Y. Yamada, T. Yoneda, Med. Eng. Phys. 22, 4 (2000)Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Margherita Mencattelli
    • 1
  • Elisa Donati
    • 1
  • Pasqua Spinelli
    • 2
  • Massimo Cultrone
    • 3
  • Cesare Luzi
    • 2
  • Daniele Cantarella
    • 4
  • Cesare Stefanini
    • 1
    • 5
  1. 1.The Biorobotics InstituteScuola Superiore Sant’AnnaPisaItaly
  2. 2.Postgraduate School of OrthodonticsUniversity of FerraraFerraraItaly
  3. 3.Studio Dentistico CultronePisaItaly
  4. 4.Centro Odontoiatrico CantarellaTrevisoItaly
  5. 5.Department of Biomedical EngineeringKhalifa UniversityAbu DhabiUAE

Personalised recommendations