Biomedical Microdevices

, 19:10 | Cite as

Evidence of differential mass change rates between human breast cancer cell lines in culture

  • Elise A. Corbin
  • Olaoluwa O. Adeniba
  • Olivia V. Cangellaris
  • William P. King
  • Rashid Bashir


Investigating the growth signatures of single cells will determine how cell growth is regulated and cell size is maintained. The ability to precisely measure such changes and alterations in cell size and cell mass could be important for applications in cancer and drug screening. Here, we measure the mass growth rate of individual benign (MCF-10A), non-invasive (MCF-7), and highly-invasive malignant (MDA-MB-231) breast cancer cells. A micro-patterning technique was employed to allow for the long-term growth of motile cells. Results show mass growth rates at 4.8%, 1.2%, and 2.8% for MCF-10A, MCF-7, and MDA-MB-231, demonstrating that normal cells have a higher mass growth rate than cancerous cells. All the cell lines show an increase in mass change rate indicating that the mass accumulation rate is exponential over a single cell cycle. The growth rates measured with our MEMS sensor are compared with doubling times obtained through conventional bulk analysis techniques, and exhibit excellent agreement.


MEMS mass sensor Breast cancer Cell growth rate Cell micromechanics Resonant frequency 

Supplementary material

10544_2017_151_MOESM1_ESM.docx (67 kb)
ESM 1 (DOCX 66 kb)
10544_2017_151_MOESM2_ESM.mp4 (1.7 mb)
Movie S1 (MP4 1752 kb)
10544_2017_151_MOESM3_ESM.mp4 (1 mb)
Movie S2 (MP4 1056 kb)
10544_2017_151_MOESM4_ESM.mp4 (3.3 mb)
Movie S3 (MP4 3383 kb)


  1. B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter, Molecular Biology of the Cell, 4th edn. (Garland Science, New York, 2002)Google Scholar
  2. A.K. Bryan, A. Goranov, A. Amon, S.R. Manalis, Proc. Natl. Acad. Sci. 107, 999 (2010)CrossRefGoogle Scholar
  3. I. Conlon, M. Raff, J. Biol. 2 (2003)Google Scholar
  4. S. Cooper, Theor. Biol. Med. Model. 3, 10 (2006)CrossRefGoogle Scholar
  5. E.A. Corbin, L.J. Millet, J.H. Pikul, C.L. Johnson, J.G. Georgiadis, W.P. King, R. Bashir, Biomed. Microdevices. 15, 311 (2013)Google Scholar
  6. E.A. Corbin, B.R. Dorvel, L.J. Millet, W.P. King, R. Bashir, Lab Chip 14, 1401 (2014a)CrossRefGoogle Scholar
  7. E.A. Corbin, L.J. Millet, K.R. Keller, W.P. King, R. Bashir, Anal. Chem. 86, 4864 (2014b)CrossRefGoogle Scholar
  8. E.A. Corbin, F. Kong, C.T. Lim, W.P. King, R. Bashir, Lab Chip 15, 839 (2015)CrossRefGoogle Scholar
  9. E.A. Corbin, O.O. Adeniba, R.H. Ewoldt, R. Bashir, Appl. Phys. Lett. 108, 93701 (2016)CrossRefGoogle Scholar
  10. S.E. Cross, Y.-S. Jin, J. Rao, J.K. Gimzewski, Nat Nano 2, 780 (2007)CrossRefGoogle Scholar
  11. D. Di Carlo, L.P. Lee, Anal. Chem. 78, 7918 (2006)CrossRefGoogle Scholar
  12. D. Di Carlo, H. T. K. Tse, and D. R. Gossett, in Single-cell anal. Methods Protoc., ed. by S. Lindström and H. Andersson-Svahn (Humana Press, Totowa, 2012), pp. 1–10Google Scholar
  13. B. Dorvel, B. Reddy, I. Block, P. Mathias, S.E. Clare, B. Cunningham, D.E. Bergstrom, R. Bashir, Adv. Funct. Mater. 20, 87 (2010)CrossRefGoogle Scholar
  14. E. Evans, A. Yeung, Biophys. J. 56, 151 (1989)CrossRefGoogle Scholar
  15. M. Godin, F.F. Delgado, S. Son, W.H. Grover, A.K. Bryan, A. Tzur, P. Jorgensen, K. Payer, A.D. Grossman, M.W. Kirschner, S.R. Manalis, Nat Meth 7, 387 (2010)CrossRefGoogle Scholar
  16. J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H.M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, C. Bilby, Biophys. J. 88, 3689 (2016)CrossRefGoogle Scholar
  17. D. Hanahan, R.A. Weinberg, Cell 100, 57 (2000)CrossRefGoogle Scholar
  18. D. Hanahan, R.A. Weinberg, Cell 144, 646 (2011)CrossRefGoogle Scholar
  19. R.M. Hochmuth, J. Biomech. 33, 15 (2016)CrossRefGoogle Scholar
  20. C. Hou, W. Zuo, M.E. Moses, W.H. Woodruff, J.H. Brown, G.B. West, Science 322, 736 (2008)CrossRefGoogle Scholar
  21. T.G. Kuznetsova, M.N. Starodubtseva, N.I. Yegorenkov, S.A. Chizhik, Micron 38, 824 (2007)CrossRefGoogle Scholar
  22. J. Li, C. Thielemann, U. Reuning, D. Johannsmann, Biosens. Bioelectron. 20, 1333 (2005)CrossRefGoogle Scholar
  23. A.C. Lloyd, Cell 154, 1194 (2013)CrossRefGoogle Scholar
  24. H. Lodish, A. Berk, P. Matsudaira, C.A. Kaiser, M. Krieger, M.P. Scott, S.L. Zipursky, J. Darnell, Molecular Cell Biology, 5th edn. (WH Freeman, New York, 2003)Google Scholar
  25. L.J. Millet, E.A. Corbin, R. Free, K. Park, H. Kong, W.P. King, R. Bashir, Small 8, 2555 (2012)CrossRefGoogle Scholar
  26. J. Mitchison, Int. Rev. Cytol. 165 (2003)Google Scholar
  27. J.M. Mitchison, Theor. Biol. Med. Model. 2, 4 (2005)CrossRefGoogle Scholar
  28. K. Park, L.J. Millet, N. Kim, H. Li, X. Jin, G. Popescu, N.R. Aluru, K.J. Hsia, R. Bashir, Proc. Natl. Acad. Sci. 107, 20691 (2010)CrossRefGoogle Scholar
  29. K. Park, A. Mehrnezhad, E.A. Corbin, R. Bashir, Lab Chip 15, 3460 (2015)CrossRefGoogle Scholar
  30. M. Plodinec, M. Loparic, C.A. Monnier, E.C. Obermann, R. Zanetti-Dallenbach, P. Oertle, J.T. Hyotyla, U. Aebi, M. Bentires-Alj, L.Y.H., C.-A. Schoenenberger, Nat Nano 7, 757 (2012)CrossRefGoogle Scholar
  31. G. Popescu, Y. Park, N. Lue, C. Best-Popescu, L. Deflores, R.R. Dasari, M.S. Feld, K. Badizadegan, Am. J. Physiol.-Cell Physiol 295, C538 (2008)CrossRefGoogle Scholar
  32. G. Popescu, K. Park, M. Mir, R. Bashir, Lab Chip 14, 646 (2014)CrossRefGoogle Scholar
  33. M. Sato, N. Ohshima, R.M. Nerem, J. Biomech. 29, 461 (2016)CrossRefGoogle Scholar
  34. S. Son, A. Tzur, Y. Weng, P. Jorgensen, J. Kim, M.W. Kirschner, S.R. Manalis, Nat. Methods 9, 910 (2012)CrossRefGoogle Scholar
  35. A. Tzur, R. Kafri, V.S. LeBleu, G. Lahav, M.W. Kirschner, Science 325, 167 LP (2009)CrossRefGoogle Scholar
  36. J.H.C. Wang, B.P. Thampatty, An Introductory Review of Cell Mechanobiology, Biomechanics and Modeling in Mechanobiology (2006), pp. 1–16Google Scholar
  37. R.A. Weinberg, The biology of cancer, 1st edn. (Garland Science, New York, 2006)Google Scholar
  38. D. Wirtz, K. Konstantopoulos, P.C. Searson, Nat. Rev. Cancer 11, 512 (2011)CrossRefGoogle Scholar
  39. J. Yeom, M.A. Shannon, Adv. Funct. Mater. 20, 289 (2010)Google Scholar
  40. T.A. Zangle, M.A. Teitell, Nat Meth 11, 1221 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Elise A. Corbin
    • 1
    • 2
    • 3
  • Olaoluwa O. Adeniba
    • 1
    • 2
  • Olivia V. Cangellaris
    • 2
    • 4
  • William P. King
    • 1
    • 2
  • Rashid Bashir
    • 2
    • 4
  1. 1.Department of Mechanical Science and EngineeringUniversity of Illinois Urbana-ChampaignUrbanaUSA
  2. 2.Micro and Nanotechnology LaboratoryUniversity of Illinois Urbana-ChampaignUrbanaUSA
  3. 3.Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaUSA
  4. 4.Department of BioengineeringUniversity of Illinois Urbana-ChampaignUrbanaUSA

Personalised recommendations