Skip to main content

Advertisement

Log in

Evidence of differential mass change rates between human breast cancer cell lines in culture

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Investigating the growth signatures of single cells will determine how cell growth is regulated and cell size is maintained. The ability to precisely measure such changes and alterations in cell size and cell mass could be important for applications in cancer and drug screening. Here, we measure the mass growth rate of individual benign (MCF-10A), non-invasive (MCF-7), and highly-invasive malignant (MDA-MB-231) breast cancer cells. A micro-patterning technique was employed to allow for the long-term growth of motile cells. Results show mass growth rates at 4.8%, 1.2%, and 2.8% for MCF-10A, MCF-7, and MDA-MB-231, demonstrating that normal cells have a higher mass growth rate than cancerous cells. All the cell lines show an increase in mass change rate indicating that the mass accumulation rate is exponential over a single cell cycle. The growth rates measured with our MEMS sensor are compared with doubling times obtained through conventional bulk analysis techniques, and exhibit excellent agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter, Molecular Biology of the Cell, 4th edn. (Garland Science, New York, 2002)

  • A.K. Bryan, A. Goranov, A. Amon, S.R. Manalis, Proc. Natl. Acad. Sci. 107, 999 (2010)

    Article  Google Scholar 

  • I. Conlon, M. Raff, J. Biol. 2 (2003)

  • S. Cooper, Theor. Biol. Med. Model. 3, 10 (2006)

    Article  Google Scholar 

  • E.A. Corbin, L.J. Millet, J.H. Pikul, C.L. Johnson, J.G. Georgiadis, W.P. King, R. Bashir, Biomed. Microdevices. 15, 311 (2013)

  • E.A. Corbin, B.R. Dorvel, L.J. Millet, W.P. King, R. Bashir, Lab Chip 14, 1401 (2014a)

    Article  Google Scholar 

  • E.A. Corbin, L.J. Millet, K.R. Keller, W.P. King, R. Bashir, Anal. Chem. 86, 4864 (2014b)

    Article  Google Scholar 

  • E.A. Corbin, F. Kong, C.T. Lim, W.P. King, R. Bashir, Lab Chip 15, 839 (2015)

    Article  Google Scholar 

  • E.A. Corbin, O.O. Adeniba, R.H. Ewoldt, R. Bashir, Appl. Phys. Lett. 108, 93701 (2016)

    Article  Google Scholar 

  • S.E. Cross, Y.-S. Jin, J. Rao, J.K. Gimzewski, Nat Nano 2, 780 (2007)

    Article  Google Scholar 

  • D. Di Carlo, L.P. Lee, Anal. Chem. 78, 7918 (2006)

    Article  Google Scholar 

  • D. Di Carlo, H. T. K. Tse, and D. R. Gossett, in Single-cell anal. Methods Protoc., ed. by S. Lindström and H. Andersson-Svahn (Humana Press, Totowa, 2012), pp. 1–10

  • B. Dorvel, B. Reddy, I. Block, P. Mathias, S.E. Clare, B. Cunningham, D.E. Bergstrom, R. Bashir, Adv. Funct. Mater. 20, 87 (2010)

    Article  Google Scholar 

  • E. Evans, A. Yeung, Biophys. J. 56, 151 (1989)

    Article  Google Scholar 

  • M. Godin, F.F. Delgado, S. Son, W.H. Grover, A.K. Bryan, A. Tzur, P. Jorgensen, K. Payer, A.D. Grossman, M.W. Kirschner, S.R. Manalis, Nat Meth 7, 387 (2010)

    Article  Google Scholar 

  • J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H.M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, C. Bilby, Biophys. J. 88, 3689 (2016)

    Article  Google Scholar 

  • D. Hanahan, R.A. Weinberg, Cell 100, 57 (2000)

    Article  Google Scholar 

  • D. Hanahan, R.A. Weinberg, Cell 144, 646 (2011)

    Article  Google Scholar 

  • R.M. Hochmuth, J. Biomech. 33, 15 (2016)

    Article  Google Scholar 

  • C. Hou, W. Zuo, M.E. Moses, W.H. Woodruff, J.H. Brown, G.B. West, Science 322, 736 (2008)

    Article  Google Scholar 

  • T.G. Kuznetsova, M.N. Starodubtseva, N.I. Yegorenkov, S.A. Chizhik, Micron 38, 824 (2007)

    Article  Google Scholar 

  • J. Li, C. Thielemann, U. Reuning, D. Johannsmann, Biosens. Bioelectron. 20, 1333 (2005)

    Article  Google Scholar 

  • A.C. Lloyd, Cell 154, 1194 (2013)

    Article  Google Scholar 

  • H. Lodish, A. Berk, P. Matsudaira, C.A. Kaiser, M. Krieger, M.P. Scott, S.L. Zipursky, J. Darnell, Molecular Cell Biology, 5th edn. (WH Freeman, New York, 2003)

  • L.J. Millet, E.A. Corbin, R. Free, K. Park, H. Kong, W.P. King, R. Bashir, Small 8, 2555 (2012)

    Article  Google Scholar 

  • J. Mitchison, Int. Rev. Cytol. 165 (2003)

  • J.M. Mitchison, Theor. Biol. Med. Model. 2, 4 (2005)

    Article  Google Scholar 

  • K. Park, L.J. Millet, N. Kim, H. Li, X. Jin, G. Popescu, N.R. Aluru, K.J. Hsia, R. Bashir, Proc. Natl. Acad. Sci. 107, 20691 (2010)

    Article  Google Scholar 

  • K. Park, A. Mehrnezhad, E.A. Corbin, R. Bashir, Lab Chip 15, 3460 (2015)

    Article  Google Scholar 

  • M. Plodinec, M. Loparic, C.A. Monnier, E.C. Obermann, R. Zanetti-Dallenbach, P. Oertle, J.T. Hyotyla, U. Aebi, M. Bentires-Alj, L.Y.H., C.-A. Schoenenberger, Nat Nano 7, 757 (2012)

    Article  Google Scholar 

  • G. Popescu, Y. Park, N. Lue, C. Best-Popescu, L. Deflores, R.R. Dasari, M.S. Feld, K. Badizadegan, Am. J. Physiol.-Cell Physiol 295, C538 (2008)

    Article  Google Scholar 

  • G. Popescu, K. Park, M. Mir, R. Bashir, Lab Chip 14, 646 (2014)

    Article  Google Scholar 

  • M. Sato, N. Ohshima, R.M. Nerem, J. Biomech. 29, 461 (2016)

    Article  Google Scholar 

  • S. Son, A. Tzur, Y. Weng, P. Jorgensen, J. Kim, M.W. Kirschner, S.R. Manalis, Nat. Methods 9, 910 (2012)

    Article  Google Scholar 

  • A. Tzur, R. Kafri, V.S. LeBleu, G. Lahav, M.W. Kirschner, Science 325, 167 LP (2009)

    Article  Google Scholar 

  • J.H.C. Wang, B.P. Thampatty, An Introductory Review of Cell Mechanobiology, Biomechanics and Modeling in Mechanobiology (2006), pp. 1–16

    Google Scholar 

  • R.A. Weinberg, The biology of cancer, 1st edn. (Garland Science, New York, 2006)

    Google Scholar 

  • D. Wirtz, K. Konstantopoulos, P.C. Searson, Nat. Rev. Cancer 11, 512 (2011)

    Article  Google Scholar 

  • J. Yeom, M.A. Shannon, Adv. Funct. Mater. 20, 289 (2010)

  • T.A. Zangle, M.A. Teitell, Nat Meth 11, 1221 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rashid Bashir.

Electronic supplementary material

ESM 1

(DOCX 66 kb)

Movie S1

(MP4 1752 kb)

Movie S2

(MP4 1056 kb)

Movie S3

(MP4 3383 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Corbin, E.A., Adeniba, O.O., Cangellaris, O.V. et al. Evidence of differential mass change rates between human breast cancer cell lines in culture. Biomed Microdevices 19, 10 (2017). https://doi.org/10.1007/s10544-017-0151-x

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10544-017-0151-x

Keywords

Navigation