Frequency-controlled wireless shape memory polymer microactuator for drug delivery application



This paper reports the wireless Shape-Memory-Polymer actuator operated by external radio frequency magnetic fields and its application in a drug delivery device. The actuator is driven by a frequency-sensitive wireless resonant heater which is bonded directly to the Shape-Memory-Polymer and is activated only when the field frequency is tuned to the resonant frequency of heater. The heater is fabricated using a double-sided Cu-clad Polyimide with much simpler fabrication steps compared to previously reported methods. The actuation range of 140 μm as the tip opening distance is achieved at device temperature 44 °C in 30 s using 0.05 W RF power. A repeatability test shows that the actuator’s average maximum displacement is 110 μm and standard deviation of 12 μm. An experiment is conducted to demonstrate drug release with 5 μL of an acidic solution loaded in the reservoir and the device is immersed in DI water. The actuator is successfully operated in water through wireless activation. The acidic solution is released and diffused in water with an average release rate of 0.172 μL/min.


MEMS Microfabrication Microactuators Shape memory polymer LC circuit Wireless power transfer Drug delivery device 



The authors acknowledge the financial support from Ministry of Science, Technology and Innovation Malaysia under E-science Fund (03-01-06-SF1211) and Ministry of Higher Education Malaysia (MOHE) under PRGS (1/13/TK04/UTM/02/01) and FRGS (2/2014/TK01/UTM/02/3) schemes. M. A. Zainal acknowledges the financial support from Universiti Teknologi Malaysia (UTM) under Zamalah scheme.

Supplementary material

10544_2017_148_MOESM1_ESM.mpeg (33.3 mb)
ESM 1 (MPEG 34150 kb)


  1. S.K. Ahn, P. Deshmukh, R.M. Kasi, Macromolecules 43, 7330 (2010)CrossRefGoogle Scholar
  2. P. Basset, A. Kaiser, P. Bigotte, D. Collard, and L. Buchaillot, in Micro Electro Mechanical Systems, 2002. The Fifteenth IEEE International Conference (2002), pp. 606–609Google Scholar
  3. S. Chen, J. Hu, H. Zhuo, Y. Zhu, Mater. Lett. 62, 4088 (2008)CrossRefGoogle Scholar
  4. F.P. Du, E.Z. Ye, W. Yang, T.H. Shen, C.Y. Tang, X.L. Xie, X.P. Zhou, W.C. Law, Composites Part B Engineering 68, 170 (2015)CrossRefGoogle Scholar
  5. R. Farra, N.F. Sheppard Jr., L. McCabe, R.M. Neer, J.M. Anderson, J.T. Santini Jr., M.J. Cima, R. Langer, Sc. Transl. Med. 4 (2012)Google Scholar
  6. X.Q. Feng, G.Z. Zhang, Q.M. Bai, H.Y. Jiang, B. Xu, H.J. Li, Macromolecular Materials Engineering 301, 125 (2016)CrossRefGoogle Scholar
  7. A. Fick, Annalender Physik 170, 59 (1855)CrossRefGoogle Scholar
  8. J. Fong, Z. Xiao, K. Takahata, Lab Chip – Miniaturisation Chemistry Biology 15, 1050 (2015)CrossRefGoogle Scholar
  9. S.Y. Gu, S.P. Jin, X.F. Gao, J. Mu, Smart Mater. Struct. 25 (2016)Google Scholar
  10. L.H. Han, S. Chen, Sensors Actuators, A: Physical 121, 35 (2005)CrossRefGoogle Scholar
  11. J. Li, W.R. Rodgers, T. Xie, Polymer 52, 5320 (2011)CrossRefGoogle Scholar
  12. R. Lo, P.Y. Li, S. Saati, R.N. Agrawal, M.S. Humayun, E. Meng, Biomed. Microdevices 11, 959 (2009)CrossRefGoogle Scholar
  13. H. Lu, Y. Yao, L. Lin, Pigment Resin Technology 43, 26 (2014)CrossRefGoogle Scholar
  14. D.J. Maitland, M.F. Metzger, D. Schumann, A. Lee, T.S. Wilson, Lasers Surgery Medicine 30, 1 (2002)CrossRefGoogle Scholar
  15. H. Meng and G. Li, Polymer(United Kingdom) 54, 2199 (2013).Google Scholar
  16. M.S. Mohamed Ali, K. Takahata, Sensors Actuators A: Physical 163, 363 (2010)CrossRefGoogle Scholar
  17. M.S. Mohamed Ali, K. Takahata, J. Micromech. Microeng. 21 (2011)Google Scholar
  18. J.H. Prescott, S. Lipka, S. Baldwin, N.F. Sheppard Jr., J.M. Maloney, J. Coppeta, B. Yomtov, M.A. Staples, J.T. Santini Jr., Nat. Biotechnol. 24, 437 (2006)CrossRefGoogle Scholar
  19. T.J. Smith, P.J. Coyne, W.R. Smith, J.D. Roberts, V. Smith, American Journal Hematology 78, 153 (2005)CrossRefGoogle Scholar
  20. S. Smith, T.B. Tang, J.G. Terry, J.T.M. Stevenson, B.W. Flynn, H.M. Reekie, A.F. Murray, A.M. Gundlach, D. Renshaw, B. Dhillon, A. Ohtori, Y. Inoue, A.J. Walton, IET Nanobiotechnology 1, 80 (2007)CrossRefGoogle Scholar
  21. H. Tamagawa, Mater. Lett. 64, 749 (2010)CrossRefGoogle Scholar
  22. H. Tamagawa, K. Kikuchi, G. Nagai, Sensors Actuators, A: Physical 163, 356 (2010)CrossRefGoogle Scholar
  23. T.B. Tang, S. Smith, B.W. Flynn, J.T.M. Stevenson, A.M. Gundlach, H.M. Reekie, A.F. Murray, D. Renshaw, B. Dhillon, A. Ohtori, Y. Inoue, J.G. Terry, A.J. Walton, IET Nanobiotechnology 2, 72 (2008)CrossRefGoogle Scholar
  24. K. Vollmers, D.R. Frutiger, B.E. Kratochvil, B.J. Nelson, Appl. Phys. Lett. 92 (2008)Google Scholar
  25. Y. Wang, R. Zhao, S. Wang, Z. Liu, R. Tang, Biomaterials 75, 71 (2016)CrossRefGoogle Scholar
  26. T. Weigel, R. Mohr, A. Lendlein, Smart Materials Structures 18, 025011 (2009)CrossRefGoogle Scholar
  27. S.S. Zaidi, F. Lamarque, J. Favergeon, O. Carton, C. Prelle, M. Lejeune, A. Zeinert, Journal Intelligent Material Systems Structures 21, 175 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Faculty of Electrical EngineeringUniversiti Teknologi MalaysiaSkudaiMalaysia

Personalised recommendations