Microfluidic Gut-liver chip for reproducing the first pass metabolism

Article

Abstract

After oral intake of drugs, drugs go through the first pass metabolism in the gut and the liver, which greatly affects the final outcome of the drugs’ efficacy and side effects. The first pass metabolism is a complex process involving the gut and the liver tissue, with transport and reaction occurring simultaneously at various locations, which makes it difficult to be reproduced in vitro with conventional cell culture systems. In an effort to tackle this challenge, here we have developed a microfluidic gut-liver chip that can reproduce the dynamics of the first pass metabolism. The microfluidic chip consists of two separate layers for gut epithelial cells (Caco-2) and the liver cells (HepG2), and is designed so that drugs go through a sequential absorption in the gut chamber and metabolic reaction in the liver chamber. We fabricated the chip and showed that the two different cell lines can be successfully co-cultured on chip. When the two cells are cultured on chip, changes in the physiological function of Caco-2 and HepG2 cells were noted. The cytochrome P450 metabolic activity of both cells were significantly enhanced, and the absorptive property of Caco-2 cells on chip also changed in response to the presence of flow. Finally, first pass metabolism of a flavonoid, apigenin, was evaluated as a model compound, and co-culture of gut and liver cells on chip resulted in a metabolic profile that is closer to the reported profile than a monoculture of gut cells. This microfluidic gut-liver chip can potentially be a useful platform to study the complex first pass metabolism of drugs in vitro.

Keywords

Gut-liver-on-a-chip First-pass metabolism Organ-on-a-chip Microfluidic 

Notes

Acknowledgements

This work was supported by Ministry of Trade, Industry and Energy (MOTIE), Republic of Korea (10050154, Establishment of Infrastructure for industrialization of Korean Useful Microbes, R0004073), and KFRI (Korea Food Research Institute, grant no: E0121705), and Hongik University Research Fund. This work was also supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (No. NRF-2016R1A2B2008691) and by the KIST Institutional Program (No. 2 V04950).

References

  1. A. Abbott, Nature 424, 870 (2003)CrossRefGoogle Scholar
  2. T.A. Aguirre, M. Rosa, S.S. Guterres, A.R. Pohlmann, I. Coulter, D.J. Brayden, Eur. J. Pharm. Biopharm. 88, 856 (2014)CrossRefGoogle Scholar
  3. J.W. Allen, S.R. Khetani, S.N. Bhatia, Toxicol. Sci. 84, 110 (2005)CrossRefGoogle Scholar
  4. P. Artursson, K. Palm, K. Luthman, Adv. Drug Deliv. Rev. 46, 27 (2001)CrossRefGoogle Scholar
  5. S.H. Au, M.D. Chamberlain, S. Mahesh, M.V. Sefton, A.R. Wheeler, Lab Chip 14, 3290 (2014)CrossRefGoogle Scholar
  6. E. Berthier, E.W. Young, D. Beebe, Lab Chip 12, 1224 (2012)CrossRefGoogle Scholar
  7. S.N. Bhatia, D.E. Ingber, Nat. Biotechnol. 32, 760 (2014)CrossRefGoogle Scholar
  8. R. Booth, H. Kim, Lab Chip 12, 1784 (2012)CrossRefGoogle Scholar
  9. E.F. Brandon, C.D. Raap, I. Meijerman, J.H. Beijnen, J.H. Schellens, Toxicol. Appl. Pharmacol. 189, 233 (2003)CrossRefGoogle Scholar
  10. T.J. Carlson, M.B. Fisher, Comb. Chem. High Throughput Screen. 11, 258 (2008)CrossRefGoogle Scholar
  11. C.Y. Chan, P.H. Huang, F. Guo, X. Ding, V. Kapur, J.D. Mai, P.K. Yuen, T.J. Huang, Lab Chip 13, 4697 (2013)CrossRefGoogle Scholar
  12. J. Chen, H. Lin, M. Hu, J. Pharmacol. Exp. Ther. 304, 1228 (2003)CrossRefGoogle Scholar
  13. M. Chi, B. Yi, S. Oh, D.J. Park, J.H. Sung, S. Park, Biomed. Microdevices 17, 9966 (2015)CrossRefGoogle Scholar
  14. S. Choi, M. Nishikawa, A. Sakoda, Y. Sakai, Toxicol. In Vitro 18, 393 (2004)Google Scholar
  15. M.B. Esch, G.J. Mahler, T. Stokol, M.L. Shuler, Lab Chip 14, 3081 (2014)CrossRefGoogle Scholar
  16. S. Ferruzza, C. Rossi, M.L. Scarino, Y. Sambuy, Toxicol. In Vitro 26, 1252 (2012)Google Scholar
  17. K.D. Fine, C.A. Santa Ana, J.L. Porter, J.S. Fordtran, Gastroenterology 108, 983 (1995)CrossRefGoogle Scholar
  18. A. Galetin, J.B. Houston, J. Pharmacol. Exp. Ther. 318, 1220 (2006)CrossRefGoogle Scholar
  19. A. Gradolatto, M.C. Canivenc-Lavier, J.P. Basly, M.H. Siess, C. Teyssier, Drug Metab. Dispos. 32, 58 (2004)CrossRefGoogle Scholar
  20. H.F. Helander, L. Fandriks, Scand. J. Gastroenterol. 49, 681 (2014)CrossRefGoogle Scholar
  21. C. Hilgendorf, H. Spahn-Langguth, C.G. Regardh, E. Lipka, G.L. Amidon, P. Langguth, J. Pharm. Sci. 89, 63 (2000)CrossRefGoogle Scholar
  22. M. Hu, J. Chen, H. Lin, J. Pharmacol. Exp. Ther. 307, 314 (2003)CrossRefGoogle Scholar
  23. B. Hughes, Nat. Rev. Drug Discov. 8, 93 (2009)CrossRefGoogle Scholar
  24. Y. Imura, K. Sato, E. Yoshimura, Anal. Chem. 82, 9983 (2010)CrossRefGoogle Scholar
  25. Y. Imura, E. Yoshimura, K. Sato, Anal. Sci. 28, 197 (2012)CrossRefGoogle Scholar
  26. K.I. Kaitin, Clin. Pharmacol. Ther. 87, 356 (2010)CrossRefGoogle Scholar
  27. S.R. Khetani, D.R. Berger, K.R. Ballinger, M.D. Davidson, C. Lin, B.R. Ware, J Lab Autom. 20, 216 (2015)CrossRefGoogle Scholar
  28. H.J. Kim, D. Huh, G. Hamilton, D.E. Ingber, Lab Chip 12, 2165 (2012)CrossRefGoogle Scholar
  29. S.H. Kim, J.W. Lee, I. Choi, Y.C. Kim, J.B. Lee, J.H. Sung, J. Nanosci. Nanotechnol. 13, 7220 (2013)CrossRefGoogle Scholar
  30. H. Lee, D. S. Kim, S. K. Ha, I. Choi, J. M. Lee, J. H. Sung, Biotechnol. Bioeng. (2016)Google Scholar
  31. P. Martin, R. Riley, D.J. Back, A. Owen, Br. J. Pharmacol. 153, 805 (2008)CrossRefGoogle Scholar
  32. C. Masungi, C. Borremans, B. Willems, J. Mensch, A. Van Dijck, P. Augustijns, M.E. Brewster, M. Noppe, J. Pharm. Sci. 93, 2507 (2004)CrossRefGoogle Scholar
  33. C. Moraes, J.M. Labuz, B.M. Leung, M. Inoue, T.H. Chun, S. Takayama, Integr Biol (Camb) 5, 1149 (2013)CrossRefGoogle Scholar
  34. D. Moutinho, C.C. Marohnic, S.P. Panda, J. Rueff, B.S. Masters, M. Kranendonk, Drug Metab. Dispos. 40, 754 (2012)CrossRefGoogle Scholar
  35. K. Naruhashi, I. Tamai, Q. Li, Y. Sai, A. Tsuji, J. Pharm. Sci. 92, 1502 (2003)CrossRefGoogle Scholar
  36. D. Patel, S. Shukla, S. Gupta, Int. J. Oncol. 30, 233 (2007)Google Scholar
  37. J.M. Prot, C. Aninat, L. Griscom, F. Razan, C. Brochot, C.G. Guillouzo, C. Legallais, A. Corlu, E. Leclerc, Biotechnol. Bioeng. 108, 1704 (2011)CrossRefGoogle Scholar
  38. A. Sivaraman, J.K. Leach, S. Townsend, T. Iida, B.J. Hogan, D.B. Stolz, R. Fry, L.D. Samson, S.R. Tannenbaum, L.G. Griffith, Curr. Drug Metab. 6, 569 (2005)CrossRefGoogle Scholar
  39. D. Spaggiari, L. Geiser, Y. Daali, S. Rudaz, J. Pharm. Biomed. Anal. 101, 221 (2014)CrossRefGoogle Scholar
  40. J. Strovel, S. Sittampalam, N.P. Coussens, M. Hughes, J. Inglese, A. Kurtz, A. Andalibi, L. Patton, C. Austin, M. Baltezor, M. Beckloff, M. Weingarten, S. Weir, in Assay Guidance Manual, ed by G. S. Sittampalam, N. P. Coussens, H. Nelson, et al.. Early Drug Discovery and Development Guidelines: For Academic Researchers, Collaborators, and Start-up Companies (Eli Lilly & Company and the National Center for Advancing Translational Sciences, Bethesda, 2004)Google Scholar
  41. J.H. Sung, M.L. Shuler, Lab Chip 9, 1385 (2009)CrossRefGoogle Scholar
  42. J.H. Sung, C. Kam, M.L. Shuler, Lab Chip 10, 446 (2010)CrossRefGoogle Scholar
  43. J.H. Sung, M.B. Esch, J.M. Prot, C.J. Long, A. Smith, J.J. Hickman, M.L. Shuler, Lab Chip 13, 1201 (2013)CrossRefGoogle Scholar
  44. Z. Teng, C. Yuan, F. Zhang, M. Huan, W. Cao, K. Li, J. Yang, D. Cao, S. Zhou, Q. Mei, PLoS One 7, e29647 (2012)CrossRefGoogle Scholar
  45. D. Ulluwishewa, R.C. Anderson, W.C. McNabb, P.J. Moughan, J.M. Wells, N.C. Roy, J. Nutr. 141, 769 (2011)CrossRefGoogle Scholar
  46. P.M. van Midwoud, M.T. Merema, E. Verpoorte, G.M. Groothuis, Lab Chip 10, 2778 (2010)CrossRefGoogle Scholar
  47. B. Vinci, C. Duret, S. Klieber, S. Gerbal-Chaloin, A. Sa-Cunha, S. Laporte, B. Suc, P. Maurel, A. Ahluwalia, M. Daujat-Chavanieu, Biotechnol. J. 6, 554 (2011)CrossRefGoogle Scholar
  48. L. Wang, S.K. Murthy, W.H. Fowle, G.A. Barabino, R.L. Carrier, Biomaterials 30, 6825 (2009)CrossRefGoogle Scholar
  49. W.M. Westerink, W.G. Schoonen, Toxicol. In Vitro 21, 1581 (2007)Google Scholar
  50. J.P. Wikswo, E.L. Curtis, Z.E. Eagleton, B.C. Evans, A. Kole, L.H. Hofmeister, W.J. Matloff, Lab Chip 13, 3496 (2013)CrossRefGoogle Scholar
  51. O.L. Woodman, E. Chan, Clin. Exp. Pharmacol. Physiol. 31, 786 (2004)CrossRefGoogle Scholar
  52. E.W. Young, C.A. Simmons, Lab Chip 10, 143 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of Chemical EngineeringHongik UniversitySeoulSouth Korea
  2. 2.Korea Food Research InstituteSeongnam-siRepublic of Korea
  3. 3.Center for BioMicrosystems, Brain Science InstituteKorea Institute of Science and Technology (KIST)SeoulSouth Korea
  4. 4.Department of Biomedical EngineeringKorea University of Science and Technology (UST)DaejeonSouth Korea

Personalised recommendations