An ionic liquid based strain sensor for large displacement measurement

Article
  • 310 Downloads

Abstract

A robust and low cost ionic liquid based strain sensor is fabricated for high strain measurements in biomedical applications (up to 40 % and higher). A tubular 5 mm long silicone microchannel with an inner diameter of 310 µm and an outer diameter of 650 µm is filled with an ionic liquid. Three ionic liquids have been investigated: 1-butyl-1-methylpyrrolidinium bis (trifluoromethylsulfonyl) imide, ethylammonium nitrate and cholinium ethanoate. When the channel is axially stretched, geometrical deformations change the electrical impedance of the liquid channel. The sensors display a linear response and low hysteresis with an average gauge factors of 1.99 for strains up to 40 %. Additionally, to fix the sensor by surgical stitching to soft biological tissue, a sensor with tube clamps consisting of photopatternable SU-8 epoxy-based resin is proposed.

Keywords

Large displacement strain sensor Ionic liquid 1-Butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide Ethylammonium nitrate Cholinium ethanoate 

Notes

Acknowledgments

Frederik Ceyssens is a postdoctoral research fellow of FWO-Flanders. Grim Keulemans worked under a Ph.D. grant of the Agency for Innovation by Science and Technology in Flanders (IWT). The research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013) / ERC grant agreement n ° 340931.

References

  1. C. Angell, W. Xu, J. Belieres, M. Yoshizawa, Ionic liquids and ionic liquid acids with high temperature stability for fuel cell and other high temperature applications (2004)Google Scholar
  2. M. Apreleva, I. Parsons, J.J. Warner, F.H. Fu, S.L.Y. Woo, J. Shoulder Elb. Surg. 9(5), 409 (2000)CrossRefGoogle Scholar
  3. J.H. Bancroft, H.G. Jones, B. Pullan, Behav. Res. Ther. 4(1-2), 239 (1966)CrossRefGoogle Scholar
  4. D. Barlow, R. Becker, H. Leitenberg, W. Agras, J. Appl. Behav. Anal. 3(1), 73 (1970)CrossRefGoogle Scholar
  5. C. Becnel, Y. Desta, K. Kelly, J. Micromech. Microeng. 15(6), 1242 (2005)CrossRefGoogle Scholar
  6. V.V. Chaban, I.V. Voroshylova, O.N. Kalugin, O.V. Prezhdo, J. Phys. Chem. B. 116(26), 7719 (2012)CrossRefGoogle Scholar
  7. S. Cheng, Z. Wu, Adv. Funct. Mater. 21(12), 2282 (2011)CrossRefGoogle Scholar
  8. Y.N. Cheung, Y. Zhu, C.H. Cheng, C. Chao, W.W.F. Leung, Sensors Actuators A Phys. 147(2), 401 (2008)CrossRefGoogle Scholar
  9. J.B. Chossat, Y.L. Park, R.J. Wood, V. Duchaine, IEEE Sensors J. 13(9), 3405 (2013)CrossRefGoogle Scholar
  10. A. del Campo, C. Greiner, J. Micromech. Microeng. 17(6), R81 (2007)CrossRefGoogle Scholar
  11. R. Elsner, C. Eagan, S. Andersen, J. Appl. Physiol. 14(5), 871 (1959)Google Scholar
  12. J. Gamble, I. Gartside, F. Christ, J. Physiol. 464, 407 (1993)CrossRefGoogle Scholar
  13. H.E. Holling, H.C. Boland, E. Russ, Am. Heart J. 62(2), 194 (1961)CrossRefGoogle Scholar
  14. S. Kim, C. Laschi, B. Trimmer, Trends Biotechnol. 31(5), 287 (2013)CrossRefGoogle Scholar
  15. H. Lorenz, M. Despont, N. Fahrni, N. LaBianca, P. Renaud, P. Vettiger, J. Micromech. Microeng. 7(3), 121 (1997)CrossRefGoogle Scholar
  16. A.F. Pacela, Med. Biol. Eng. 4(1), 1 (1966)CrossRefGoogle Scholar
  17. O. Palumbo, F. Trequattrini, F.M. Vitucci, A. Paolone, J. Phys. Chem. B. 119(40), 12905 (2015)CrossRefGoogle Scholar
  18. Y.L. Park, B.R. Chen, R.J. Wood, IEEE Sensors J. 12(8), 2711 (2012)CrossRefGoogle Scholar
  19. M. Petkovic, J.L. Ferguson, H.N. Gunaratne, R. Ferreira, M.C. Leitao, K.R. Seddon, L.P.N. Rebelo, C.S. Pereira, Green Chem. 12(4), 643 (2010)CrossRefGoogle Scholar
  20. F. Schneider, T. Fellner, J. Wilde, U. Wallrabe, J. Micromech. Microeng. 18(6), 065008 (2008)CrossRefGoogle Scholar
  21. M.W. Toepke, D.J. Beebe, Lab Chip. 6(12), 1484 (2006)CrossRefGoogle Scholar
  22. E. Verneuil, A. Buguin, P. Silberzan, EPL (Europhysics Letters). 68(3), 412 (2004)CrossRefGoogle Scholar
  23. M. Vranes, S. Dozic, V. Djeric, S. Gadzuric, J. Chem. Eng. Data. 57(4), 1072 (2012)CrossRefGoogle Scholar
  24. P. Walden, Bull. Acad. Imper. Sci. St. Pétersbourg. 8(6), 405 (1914)Google Scholar
  25. R. Whitney, J. Physiol. 121(1), 1 (1953)CrossRefGoogle Scholar
  26. T. Yamada, Y. Hayamizu, Y. Yamamoto, Y. Yomogida, A. Izadi-Najafabadi, D.N. Futaba, K. Hata, Nat. Nanotechnol. 6(5), 296 (2011)CrossRefGoogle Scholar
  27. R. Yang, W. Wang, Sensors Actuators B Chem. 110(2), 279 (2005)CrossRefGoogle Scholar
  28. M. Youdin, T. Reich, Ann. Biomed. Eng. 4(3), 220 (1976)CrossRefGoogle Scholar
  29. Y. Zhu, C. Chao, C.H. Cheng, W.W.F. Leung, IEEE Electron Device Lett. 30(4), 337 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.KU Leuven, ESAT-MICASHeverleeBelgium

Personalised recommendations