Advertisement

Biomedical Microdevices

, 18:115 | Cite as

Maskless wafer-level microfabrication of optical penetrating neural arrays out of soda-lime glass: Utah Optrode Array

  • Ronald W. Boutte
  • Steve Blair
Article

Abstract

Borrowing from the wafer-level fabrication techniques of the Utah Electrode Array, an optical array capable of delivering light for neural optogenetic studies is presented in this paper: the Utah Optrode Array. Utah Optrode Arrays are micromachined out of sheet soda-lime-silica glass using standard backend processes of the semiconductor and microelectronics packaging industries such as precision diamond grinding and wet etching. 9 × 9 arrays with 1100μ m × 100μ m optrodes and a 500μ m back-plane are repeatably reproduced on 2i n wafers 169 arrays at a time. This paper describes the steps and some of the common errors of optrode fabrication.

Keywords

Microfabrication Maskless Utah optrode Array (UOA) Optogenetics Neurophotonics MEMS 

Notes

Acknowledgments

The majority of this work was self-funded by Mr. Ronnie Boutte, but he would like thank the Utah Science Technology and Research (USTAR) for providing seed funding under the Student-Oriented Project initiative for the Virtual CAD/CAM work for 404 a Tunable UOA. Dr. Steve Blair would like to thank the NSF for ancillary support provided under grant 1310654.

References

  1. T. Abaya, S. Blair, P. Tathireddy, L. Rieth, F. Solzbacher, A 3d glass optrode array for optical neural stimulation. Biomed. Opt. Express. 3(12), 3087 (2012a). doi: 10.1364/boe.3.003087
  2. T. Abaya, M. Diwekar, S. Blair, P. Tathireddy, L. Rieth, G. Clark, F. Solzbacher, Characterization of a 3d optrode array for infrared neural stimulation. Biomed. Opt. Express. 3(9), 2200 (2012b). doi: 10.1364/boe.3.002200 CrossRefGoogle Scholar
  3. P. Anikeeva, A.S. Andalman, I. Witten, M. Warden, I. Goshen, L. Grosenick, L.A. Gunaydin, L.M. Frank, K. Deisseroth, Optetrode: A multichannel readout for optogenetic control in freely moving mice. Nat. Neurosci. 15(1), 163–170 (2011). doi: 10.1038/nn.2992 CrossRefGoogle Scholar
  4. H. Ayaz, P.A. Shewokis, S. Bunce, B. Onaral, in An optical brain computer interface for environmental control. 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Institute of Electrical & Electronics Engineers (IEEE), (2011), doi: 10.1109/iembs.2011.6091561
  5. R. Berry, M. Getzin, L. Gjesteby, G. Wang, in X-Optogenetics and U-Optogenetics: Feasibility and Possibilities. Photonics, Multidisciplinary Digital Publishing Institute, Vol. 2, (2015), pp. 23–39Google Scholar
  6. R. Bhandari, S. Negi, F. Solzbacher, Wafer-scale fabrication of penetrating neural microelectrode arrays. Biomed.. Microdevices. 12(5), 797–807 (2010). doi: 10.1007/s10544-010-9434-1 CrossRefGoogle Scholar
  7. R.W. Boutte, M. Bijanzadeh, A. Cutrone, F. Federer, S. Johnson, S. Merlin, L. Nurminen, S. Blair, A. Angelucci, in Nonhuman primate visual cortex damage assessment of in vivo laser illumination and implanted 13X13 Utah Optrode array. in Neural Engineering Research Group Presentation (University of Utah, 2013)Google Scholar
  8. L.W. Chang, The neurotoxicology and pathology of organomecury, organolead, and organotin. J. Toxicol. Sci. 15(SupplementIV), 125–151 (1990). doi: 10.2131/jts.15.supplementiv_125 CrossRefGoogle Scholar
  9. A.S. Chuong, M.L. Miri, V. Busskamp, G.A. Matthews, L.C. Acker, A.T. Sørensen, A. Young, N.C. Klapoetke, M.A. Henninger, S.B. Kodandaramaiah, et al, Noninvasive optical inhibition with a red-shifted microbial rhodopsin. Nat. Neurosci. 17(8), 1123–1129 (2014)CrossRefGoogle Scholar
  10. S.D. Davis, D.F. Gibbons, R.L. Martin, S.R. Levitt, J. Smith, R.V. Harrington, Biocompatibility of ceramic implants in soft tissue. J. Biomed. Mater. Res. 6(5), 425–449 (1972). doi: 10.1002/jbm.820060509 CrossRefGoogle Scholar
  11. R. Hira, N. Honkura, J. Noguchi, Y. Maruyama, G.J. Augustine, H. Kasai, M. Matsuzaki, Transcranial optogenetic stimulation for functional mapping of the motor cortex. J. Neurosci. Methods. 179(2), 258–263 (2009). doi: 10.1016/j.jneumeth.2009.02.001 CrossRefGoogle Scholar
  12. N.G. Laxpati, B. Mahmoudi, C.A. Gutekunst, J.P. Newman, R. Zeller-Townson, R.E. Gross, Real-time in vivo optogenetic neuromodulation and multielectrode electrophysiologic recording with neurorighter. Front. Neuroeng. 7 (2014). doi: 10.3389/fneng.2014.00040
  13. Lowes, Gardner glass products 3/32-in x 12-in x 10-in clear replacement glass for windows, cabinets, and picture frames. http://www.lowes.com/pd/Gardner-Glass-Products-3-32-in-x-12-in-x-10-in-Clear-Replacement-Glass-for-Windows-Cabinets-and-Picture-Frames/3121139, accessed: 2016-10-09 (2016)
  14. K.A. Ludwig, J.D. Uram, J. Yang, D.C. Martin, D.R. Kipke, Chronic neural recordings using silicon microelectrode arrays electrochemically deposited with a poly(3,4-ethylenedioxythiophene) (PEDOT) film. J. Neural. Eng. 3(1), 59–70 (2006). doi: 10.1088/1741-2560/3/1/007 CrossRefGoogle Scholar
  15. Method of the year. Nat. Methods. 8(1), 1–1 (2010). doi: 10.1038/nmeth.f.321
  16. I. Ozden, H.M. Lee, M.R. Sullivan, S.S.H. Wang, Identification and clustering of event patterns from in vivo multiphoton optical recordings of neuronal ensembles. J. Neurophysiol. 100(1), 495–503 (2008). doi: 10.1152/jn.01310.2007 CrossRefGoogle Scholar
  17. R.K. Pooh, K.W. Choy, L.T. Yeung, T.K. Lau, Sonogenetics: A breakthrough in prenatal diagnosis. Donald School Journal of Ultrasound in Obstetrics and Gynecology. 5(1), 73–77 (2011)CrossRefGoogle Scholar
  18. D.R. Sparta, A.M. Stamatakis, J.L. Phillips, N. Hovelsø, R. van Zessen, G.D. Stuber, Construction of implantable optical fibers for long-term optogenetic manipulation of neural circuits. Nat. Protoc. 7(1), 12–23 (2011). doi: 10.1038/nprot.2011.413 CrossRefGoogle Scholar
  19. Thorlabs, Implantable fiber optic cannulae (2016)Google Scholar
  20. V.P. Glass, Sodalime glass: Internal transmittance [ 2m m] accessed: 2016-10-09 (2016)Google Scholar
  21. F. Wu, E. Stark, M. Im, I.J. Cho, E.S. Yoon, G. Buzsáki, K.D. Wise, E. Yoon, An implantable neural probe with monolithically integrated dielectric waveguide and recording electrodes for optogenetics applications. J. Neural. Eng. 10(5), 056,012 (2013). doi: 10.1088/1741-2560/10/5/056012 CrossRefGoogle Scholar
  22. B Yang, PD Townsend, SA Holgate, Cathodoluminescence and depth profiles of tin in float glass. J. Phys. D. Appl. Phys. 27(8), 1757–1762 (1994). doi: 10.1088/0022-3727/27/8/026 CrossRefGoogle Scholar
  23. J. Zhang, F. Laiwalla, J.A. Kim, H. Urabe, R.V. Wagenen, Y.K. Song, B.W. Connors, F. Zhang, K. Deisseroth, A.V. Nurmikko, Integrated device for optical stimulation and spatiotemporal electrical recording of neural activity in light-sensitized brain tissue. J. Neural. Eng. 6(5), 055,007 (2009). doi: 10.1088/1741-2560/6/5/055007 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Electrical and Computer EngineeringUniversity of UtahSalt Lake CityUSA

Personalised recommendations