Skip to main content

Advertisement

Log in

Maskless wafer-level microfabrication of optical penetrating neural arrays out of soda-lime glass: Utah Optrode Array

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Borrowing from the wafer-level fabrication techniques of the Utah Electrode Array, an optical array capable of delivering light for neural optogenetic studies is presented in this paper: the Utah Optrode Array. Utah Optrode Arrays are micromachined out of sheet soda-lime-silica glass using standard backend processes of the semiconductor and microelectronics packaging industries such as precision diamond grinding and wet etching. 9 × 9 arrays with 1100μ m × 100μ m optrodes and a 500μ m back-plane are repeatably reproduced on 2i n wafers 169 arrays at a time. This paper describes the steps and some of the common errors of optrode fabrication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • T. Abaya, S. Blair, P. Tathireddy, L. Rieth, F. Solzbacher, A 3d glass optrode array for optical neural stimulation. Biomed. Opt. Express. 3(12), 3087 (2012a). doi:10.1364/boe.3.003087

  • T. Abaya, M. Diwekar, S. Blair, P. Tathireddy, L. Rieth, G. Clark, F. Solzbacher, Characterization of a 3d optrode array for infrared neural stimulation. Biomed. Opt. Express. 3(9), 2200 (2012b). doi:10.1364/boe.3.002200

    Article  Google Scholar 

  • P. Anikeeva, A.S. Andalman, I. Witten, M. Warden, I. Goshen, L. Grosenick, L.A. Gunaydin, L.M. Frank, K. Deisseroth, Optetrode: A multichannel readout for optogenetic control in freely moving mice. Nat. Neurosci. 15(1), 163–170 (2011). doi:10.1038/nn.2992

    Article  Google Scholar 

  • H. Ayaz, P.A. Shewokis, S. Bunce, B. Onaral, in An optical brain computer interface for environmental control. 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Institute of Electrical & Electronics Engineers (IEEE), (2011), doi:10.1109/iembs.2011.6091561

  • R. Berry, M. Getzin, L. Gjesteby, G. Wang, in X-Optogenetics and U-Optogenetics: Feasibility and Possibilities. Photonics, Multidisciplinary Digital Publishing Institute, Vol. 2, (2015), pp. 23–39

  • R. Bhandari, S. Negi, F. Solzbacher, Wafer-scale fabrication of penetrating neural microelectrode arrays. Biomed.. Microdevices. 12(5), 797–807 (2010). doi:10.1007/s10544-010-9434-1

    Article  Google Scholar 

  • R.W. Boutte, M. Bijanzadeh, A. Cutrone, F. Federer, S. Johnson, S. Merlin, L. Nurminen, S. Blair, A. Angelucci, in Nonhuman primate visual cortex damage assessment of in vivo laser illumination and implanted 13X13 Utah Optrode array. in Neural Engineering Research Group Presentation (University of Utah, 2013)

  • L.W. Chang, The neurotoxicology and pathology of organomecury, organolead, and organotin. J. Toxicol. Sci. 15(SupplementIV), 125–151 (1990). doi:10.2131/jts.15.supplementiv_125

    Article  Google Scholar 

  • A.S. Chuong, M.L. Miri, V. Busskamp, G.A. Matthews, L.C. Acker, A.T. Sørensen, A. Young, N.C. Klapoetke, M.A. Henninger, S.B. Kodandaramaiah, et al, Noninvasive optical inhibition with a red-shifted microbial rhodopsin. Nat. Neurosci. 17(8), 1123–1129 (2014)

    Article  Google Scholar 

  • S.D. Davis, D.F. Gibbons, R.L. Martin, S.R. Levitt, J. Smith, R.V. Harrington, Biocompatibility of ceramic implants in soft tissue. J. Biomed. Mater. Res. 6(5), 425–449 (1972). doi:10.1002/jbm.820060509

    Article  Google Scholar 

  • R. Hira, N. Honkura, J. Noguchi, Y. Maruyama, G.J. Augustine, H. Kasai, M. Matsuzaki, Transcranial optogenetic stimulation for functional mapping of the motor cortex. J. Neurosci. Methods. 179(2), 258–263 (2009). doi:10.1016/j.jneumeth.2009.02.001

    Article  Google Scholar 

  • N.G. Laxpati, B. Mahmoudi, C.A. Gutekunst, J.P. Newman, R. Zeller-Townson, R.E. Gross, Real-time in vivo optogenetic neuromodulation and multielectrode electrophysiologic recording with neurorighter. Front. Neuroeng. 7 (2014). doi:10.3389/fneng.2014.00040

  • Lowes, Gardner glass products 3/32-in x 12-in x 10-in clear replacement glass for windows, cabinets, and picture frames. http://www.lowes.com/pd/Gardner-Glass-Products-3-32-in-x-12-in-x-10-in-Clear-Replacement-Glass-for-Windows-Cabinets-and-Picture-Frames/3121139, accessed: 2016-10-09 (2016)

  • K.A. Ludwig, J.D. Uram, J. Yang, D.C. Martin, D.R. Kipke, Chronic neural recordings using silicon microelectrode arrays electrochemically deposited with a poly(3,4-ethylenedioxythiophene) (PEDOT) film. J. Neural. Eng. 3(1), 59–70 (2006). doi:10.1088/1741-2560/3/1/007

    Article  Google Scholar 

  • Method of the year. Nat. Methods. 8(1), 1–1 (2010). doi:10.1038/nmeth.f.321

  • I. Ozden, H.M. Lee, M.R. Sullivan, S.S.H. Wang, Identification and clustering of event patterns from in vivo multiphoton optical recordings of neuronal ensembles. J. Neurophysiol. 100(1), 495–503 (2008). doi:10.1152/jn.01310.2007

    Article  Google Scholar 

  • R.K. Pooh, K.W. Choy, L.T. Yeung, T.K. Lau, Sonogenetics: A breakthrough in prenatal diagnosis. Donald School Journal of Ultrasound in Obstetrics and Gynecology. 5(1), 73–77 (2011)

    Article  Google Scholar 

  • D.R. Sparta, A.M. Stamatakis, J.L. Phillips, N. Hovelsø, R. van Zessen, G.D. Stuber, Construction of implantable optical fibers for long-term optogenetic manipulation of neural circuits. Nat. Protoc. 7(1), 12–23 (2011). doi:10.1038/nprot.2011.413

    Article  Google Scholar 

  • Thorlabs, Implantable fiber optic cannulae (2016)

  • V.P. Glass, Sodalime glass: Internal transmittance [ 2m m] accessed: 2016-10-09 (2016)

  • F. Wu, E. Stark, M. Im, I.J. Cho, E.S. Yoon, G. Buzsáki, K.D. Wise, E. Yoon, An implantable neural probe with monolithically integrated dielectric waveguide and recording electrodes for optogenetics applications. J. Neural. Eng. 10(5), 056,012 (2013). doi:10.1088/1741-2560/10/5/056012

    Article  Google Scholar 

  • B Yang, PD Townsend, SA Holgate, Cathodoluminescence and depth profiles of tin in float glass. J. Phys. D. Appl. Phys. 27(8), 1757–1762 (1994). doi:10.1088/0022-3727/27/8/026

    Article  Google Scholar 

  • J. Zhang, F. Laiwalla, J.A. Kim, H. Urabe, R.V. Wagenen, Y.K. Song, B.W. Connors, F. Zhang, K. Deisseroth, A.V. Nurmikko, Integrated device for optical stimulation and spatiotemporal electrical recording of neural activity in light-sensitized brain tissue. J. Neural. Eng. 6(5), 055,007 (2009). doi:10.1088/1741-2560/6/5/055007

    Article  Google Scholar 

Download references

Acknowledgments

The majority of this work was self-funded by Mr. Ronnie Boutte, but he would like thank the Utah Science Technology and Research (USTAR) for providing seed funding under the Student-Oriented Project initiative for the Virtual CAD/CAM work for 404 a Tunable UOA. Dr. Steve Blair would like to thank the NSF for ancillary support provided under grant 1310654.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald W. Boutte.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boutte, R.W., Blair, S. Maskless wafer-level microfabrication of optical penetrating neural arrays out of soda-lime glass: Utah Optrode Array. Biomed Microdevices 18, 115 (2016). https://doi.org/10.1007/s10544-016-0140-5

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10544-016-0140-5

Keywords

Navigation