Biomedical Microdevices

, 18:112 | Cite as

3D carbon nanofiber microelectrode arrays fabricated by plasma-assisted pyrolysis to enhance sensitivity and stability of real-time dopamine detection

  • Wenwen Yi
  • Yuanyuan Yang
  • Parastoo Hashemi
  • Mark Ming-Cheng Cheng


In this paper, we have fabricated 3D carbon nanofiber microelectrode arrays (MEAs) with highly reproducible and rich chemical surface areas for fast scan cyclic voltammetry (FSCV). Carbon nanofibers are created from negative photoresist by a new process called dual O2 plasma-assisted pyrolysis. The proposed approach significantly improves film adhesion and increases surface reactivity. We showcase our sensor’s compatibility with FSCV analysis by demonstrating highly sensitive and stable FSCV dopamine measurements on a prototype 4-channel array. We envision with proper surface fuctionalization the 3D carbon nanofiber MEA enable sensitive and reliable detection of multiple neurotransmitters simultaneously.


Carbon nanofiber Plasma-assisted pyrolysis Dopamine FSCV 



The device was fabricated using Nano Fabrication Core (nFab) at Wayne State University. We acknowledge the staff support during the device fabrication. This work was supported by NSF CAREER Award (1055932).


  1. M. F. De Volder, R. Vansweevelt, P. Wagner, D. Reynaerts, C. Van Hoof, A. J. Hart, Hierarchical carbon nanowire microarchitectures made by plasma-assisted pyrolysis of photoresist. ACS Nano 5(8), 6593–6600 (2011)CrossRefGoogle Scholar
  2. A. K. Dengler, G. S. McCarty, Microfabricated microelectrode sensor for measuring background and slowly changing dopamine concentrations. J. Electroanal. Chem. 693, 28–33 (2013)CrossRefGoogle Scholar
  3. S. Donner, H.-W. Li, E. S. Yeung, M. D. Porter, Fabrication of optically transparent carbon electrodes by the pyrolysis of photoresist films: approach to single-molecule spectroelectrochemistry. Anal. Chem. 78(8), 2816–2822 (2006)CrossRefGoogle Scholar
  4. F. Faridbod, M. R. Ganjali, R. Dinarvand, P. Norouzi, Developments in the field of conducting and non-conducting polymer based potentiometric membrane sensors for ions over the past decade. Sensors 8(4), 2331–2412 (2008)CrossRefGoogle Scholar
  5. F. Gonon, C. Fombarlet, M. Buda, J. F. Pujol, Electrochemical treatment of pyrolytic carbon fiber electrodes. Anal. Chem. 53(9), 1386–1389 (1981)CrossRefGoogle Scholar
  6. M. L. Heien, P. E. Phillips, G. D. Stuber, A. T. Seipel, R. M. Wightman, Overoxidation of carbon-fiber microelectrodes enhances dopamine adsorption and increases sensitivity. Analyst 128(12), 1413–1419 (2003)CrossRefGoogle Scholar
  7. M. Hirabayashi, B. Mehta, N. W. Vahidi, A. Khosla, S. Kassegne, Functionalization and characterization of pyrolyzed polymer based carbon microstructures for bionanoelectronics platforms. J. Micromech. Microeng. 23(11), 115001 (2013)CrossRefGoogle Scholar
  8. Jenkins, G. M.; Kawamura, K., Polymeric carbons--carbon fibre, glass and char. Cambridge University Press 1976.Google Scholar
  9. R. T. Kachoosangi, R. G. Compton, A simple electroanalytical methodology for the simultaneous determination of dopamine, serotonin and ascorbic acid using an unmodified edge plane pyrolytic graphite electrode. Anal. Bioanal. Chem. 387(8), 2793–2800 (2007)CrossRefGoogle Scholar
  10. A. S. Khan, A. C. Michael, Invasive consequences of using micro-electrodes and microdialysis probes in the brain. TrAC Trends Anal. Chem. 22(8), 503–508 (2003)CrossRefGoogle Scholar
  11. J. Kim, X. Song, K. Kinoshita, M. Madou, R. White, Electrochemical studies of carbon films from pyrolyzed photoresist. J. Electrochem. Soc. 145(7), 2314–2319 (1998)CrossRefGoogle Scholar
  12. R. Kostecki, X. Song, K. Kinoshita, Fabrication of interdigitated carbon structures by laser pyrolysis of photoresist. Electrochem. Solid-State Lett. 5(6), E29–E31 (2002)CrossRefGoogle Scholar
  13. D. Michael, E. R. Travis, R. M. Wightman, Peer reviewed: color images for fast-scan CV measurements in biological systems. Anal. Chem. 70(17), 586A–592A (1998)CrossRefGoogle Scholar
  14. L. M. Moretto, A. Mardegan, M. Cettolin, P. Scopece, Pyrolyzed photoresist carbon electrodes for trace Electroanalysis of nickel (II). Chemosensors 3(2), 157–168 (2015)CrossRefGoogle Scholar
  15. O. Niwa, H. Tabei, Voltammetric measurements of reversible and quasi-reversible redox species using carbon film based interdigitated array microelectrodes. Anal. Chem. 66(2), 285–289 (1994)CrossRefGoogle Scholar
  16. L. Nyholm, Electrochemical techniques for lab-on-a-chip applications. Analyst 130(5), 599–605 (2005)CrossRefGoogle Scholar
  17. V. Penmatsa, T. Kim, M. Beidaghi, H. Kawarada, L. Gu, Z. Wang, C. Wang, Three-dimensional graphene nanosheet encrusted carbon micropillar arrays for electrochemical sensing. Nanoscale 4(12), 3673–3678 (2012)CrossRefGoogle Scholar
  18. V. Penmatsa, A. R. Ruslinda, M. Beidaghi, H. Kawarada, C. Wang, Platelet-derived growth factor oncoprotein detection using three-dimensional carbon microarrays. Biosens. Bioelectron. 39(1), 118–123 (2013)CrossRefGoogle Scholar
  19. M. Poon, R. L. McCreery, In situ laser activation of glassy carbon electrodes. Anal. Chem. 58(13), 2745–2750 (1986)CrossRefGoogle Scholar
  20. S. Ranganathan, R. L. McCreery, Electroanalytical performance of carbon films with near-atomic flatness. Anal. Chem. 73(5), 893–900 (2001)CrossRefGoogle Scholar
  21. S. Ranganathan, R. Mccreery, S. M. Majji, M. Madou, Photoresist-derived carbon for microelectromechanical systems and electrochemical applications. J. Electrochem. Soc. 147(1), 277–282 (2000)CrossRefGoogle Scholar
  22. J. G. Roberts, B. P. Moody, G. S. McCarty, L. A. Sombers, Specific oxygen-containing functional groups on the carbon surface underlie an enhanced sensitivity to dopamine at electrochemically pretreated carbon fiber microelectrodes. Langmuir 26(11), 9116–9122 (2010)CrossRefGoogle Scholar
  23. J. G. Roberts, K. L. Hamilton, L. A. Sombers, Comparison of electrode materials for the detection of rapid hydrogen peroxide fluctuations using background-subtracted fast scan cyclic voltammetry. Analyst 136(17), 3550–3556 (2011)CrossRefGoogle Scholar
  24. D. Sánchez-Molas, J. Cases-Utrera, P. Godignon, F. J. del Campo, Mercury detection at microfabricated pyrolyzed photoresist film (PPF) disk electrodes. Sensors Actuators B Chem. 186, 293–299 (2013)CrossRefGoogle Scholar
  25. A. Singh, J. Jayaram, M. Madou, S. Akbar, Pyrolysis of negative photoresists to fabricate carbon structures for microelectromechanical systems and electrochemical applications. J. Electrochem. Soc. 149(3), E78–E83 (2002)CrossRefGoogle Scholar
  26. E. Sinkala, J. E. McCutcheon, M. J. Schuck, E. Schmidt, M. F. Roitman, D. T. Eddington, Electrode calibration with a microfluidic flow cell for fast-scan cyclic voltammetry. Lab Chip 12(13), 2403–2408 (2012)CrossRefGoogle Scholar
  27. Y. Song, R. Agrawal, Y. Hao, C. Chen, C. Wang, C-MEMS based microsupercapacitors and microsensors. ECS Trans. 61(7), 55–64 (2014)CrossRefGoogle Scholar
  28. A. M. Strand, B. J. Venton, Flame etching enhances the sensitivity of carbon-fiber microelectrodes. Anal. Chem. 80(10), 3708–3715 (2008)CrossRefGoogle Scholar
  29. P. Takmakov, M. K. Zachek, R. B. Keithley, P. L. Walsh, C. Donley, G. S. McCarty, R. M. Wightman, Carbon microelectrodes with a renewable surface. Anal. Chem. 82(5), 2020–2028 (2010)CrossRefGoogle Scholar
  30. J. J. VanDersarl, A. Mercanzini, P. Renaud, Integration of 2D and 3D thin film glassy carbon electrode arrays for electrochemical dopamine sensing in flexible Neuroelectronic implants. Adv. Funct. Mater. 25(1), 78–84 (2015)CrossRefGoogle Scholar
  31. C. Wang, G. Jia, L. H. Taherabadi, M. J. Madou, A novel method for the fabrication of high-aspect ratio C-MEMS structures. Microelectromechanical Systems, Journal of 14(2), 348–358 (2005)CrossRefGoogle Scholar
  32. S. Xi, T. Shi, D. Liu, L. Xu, H. Long, W. Lai, Z. Tang, Integration of carbon nanotubes to three-dimensional C-MEMS for glucose sensors. Sensors Actuators A Phys. 198, 15–20 (2013)CrossRefGoogle Scholar
  33. H. Xu, K. Malladi, C. Wang, L. Kulinsky, M. Song, M. Madou, Carbon post-microarrays for glucose sensors. Biosens. Bioelectron. 23(11), 1637–1644 (2008)CrossRefGoogle Scholar
  34. Y. Yang, A. A. Ibrahim, J. L. Stockdill, P. Hashemi, A density-controlled scaffolding strategy for covalent functionalization of carbon-fiber microelectrodes. Anal. Methods 7(17), 7352–7357 (2015)CrossRefGoogle Scholar
  35. M. K. Zachek, A. Hermans, R. M. Wightman, G. S. McCarty, Electrochemical dopamine detection: comparing gold and carbon fiber microelectrodes using background subtracted fast scan cyclic voltammetry. J. Electroanal. Chem. 614(1), 113–120 (2008)CrossRefGoogle Scholar
  36. M. K. Zachek, P. Takmakov, B. Moody, R. M. Wightman, G. S. McCarty, Simultaneous decoupled detection of dopamine and oxygen using pyrolyzed carbon microarrays and fast-scan cyclic voltammetry. Anal. Chem. 81(15), 6258–6265 (2009)CrossRefGoogle Scholar
  37. M. K. Zachek, J. Park, P. Takmakov, R. M. Wightman, G. S. McCarty, Microfabricated FSCV-compatible microelectrode array for real-time monitoring of heterogeneous dopamine release. Analyst 135(7), 1556–1563 (2010)CrossRefGoogle Scholar
  38. A. G. Zestos, M. D. Nguyen, B. L. Poe, C. B. Jacobs, B. J. Venton, Epoxy insulated carbon fiber and carbon nanotube fiber microelectrodes. Sensors Actuators B Chem. 182, 652–658 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Wenwen Yi
    • 1
  • Yuanyuan Yang
    • 2
  • Parastoo Hashemi
    • 3
  • Mark Ming-Cheng Cheng
    • 1
  1. 1.Department of Electrical and Computer EngineeringWayne State UniversityDetroitUSA
  2. 2.Department of ChemistryWayne State UniversityDetroitUSA
  3. 3.Department of Chemistry and BiochemistryUniversity of South CarolinaColumbiaUSA

Personalised recommendations