Biomedical Microdevices

, 18:81 | Cite as

Intracortical polyimide electrodes with a bioresorbable coating

  • Christina Hassler
  • Julien Guy
  • Max Nietzschmann
  • Dennis T.T. Plachta
  • Jochen F. Staiger
  • Thomas Stieglitz


Polyimide based shaft electrodes were coated with a bioresorbable layer to stiffen them for intracortical insertion and to reduce the mechanical mismatch between the target tissue and the implanted device after degradation of the coating. Molten saccharose was used as coating material. In a proof-of-concept study, the electrodes were implanted into the cortex of Wistar rats and the insertion forces during implantation were recorded. Electrochemical impedance spectroscopy was performed immediately after implantation and up to 13 weeks after implantation to monitor the tissue response to the implanted electrodes. The recorded spectra were modeled with an equivalent circuit to differentiate the influence of the single components. In one rat, a peak in the encapsulation resistance was observable after two weeks of implantation, indicating the peak of the acute inflammatory response. In another rat, the lowest resistances were observed after four weeks, indicating the termination of the acute inflammatory response. Multiunit activity was recorded with an adequate signal to noise ratio to allow spike sorting. Histology was performed after 7, 45 and 201 days of implantation. The results showed the highest tissue reaction after 45 days and confirmed impedance data that acute inflammatory reactions terminate over time.


Polyimide Intracortical Electrode Bioresorbable Coating 



This work was supported by the German Federal Ministry of Education and Research (BMBF grant 01GQ0830).


  1. M. Asplund, C. Boehler, T. Stieglitz, Front Neuroeng 7 (2014)Google Scholar
  2. P. K. Campbell, K. E. Jones, R. J. Huber, K. W. Horch, R. A. Normann, IEEE Trans Biomed Eng 38, 8 (1991)CrossRefGoogle Scholar
  3. X. Cui, D.C. Martin, Sensor Actuat B-Chem, 89 (2003a)Google Scholar
  4. X. Cui, D.C. Martin, Sensor Actuat A-Phys, 103 (2003b)Google Scholar
  5. X. T. Cui, D. D. Zhou, IEEE Trans Neural Syst Rehabil Eng 15, 4 (2007)CrossRefGoogle Scholar
  6. X. Cui, J. Hetke, J. A. Wiler, D. J. Anderson, D. C. Martin, Sensor Actuat A-Phys 93 (2001a)Google Scholar
  7. X. Cui, A. L. Lee, Y. Raphael, J. A. Wiler, J. F. Hetke, D. J. Anderson, J Biomed Mater Res 56 (2001b)Google Scholar
  8. X. Cui, J. Wiler, M. Dzaman, R. A. Altschuler, D. C. Martin, Biomaterials 24 (2003)Google Scholar
  9. M. DiLuca, J. Olesen, Neuron 82, 6 (2014)CrossRefGoogle Scholar
  10. J. P. Donoghue, Nat Neurosci 5 (2002)Google Scholar
  11. D. J. Edell, V. V. Toi, V. M. McNeil, L. D. Clark, IEEE Trans Biomed Eng 39, 6 (1992)CrossRefGoogle Scholar
  12. W. Franks, I. Schenker, P. Schmutz, A. Hierlemann, IEEE Trans Biomed Eng 52, 7 (2005)CrossRefGoogle Scholar
  13. C. Hassler, J. Guy, M. Nietzschmann, J.F. Staiger, T. Stieglitz (2011) doi  10.1109/IEMBS. 2011.6090143
  14. C. Henle, M. Raab, J. G. Cordeiro, S. Doostkam, A. Schulze-Bonhage, T. Stieglitz, J. Rickert, Biomed. Microdevices 13, 1 (2011)CrossRefGoogle Scholar
  15. L. R. Hochberg, M. D. Serruya, G. M. Friehs, J. A. Mukand, M. Saleh, A. H. Caplan, A. Branner, D. Chen, R. D. Penn, J. P. Donoghue, Nature 442, 7099 (2006)CrossRefGoogle Scholar
  16. N. Haj Hosseini, R. Hoffmann, S. Kisban, T. Stieglitz, O. Paul, P. Ruther, The 29th Ann. Int. Conf. IEEE EMBS (2007)Google Scholar
  17. W. Jensen, K. Yoshida, U. G. Hofmann, IEEE Trans Biomed Eng 53, 5 (2006)CrossRefGoogle Scholar
  18. D. H. Kim, M. R. Abidan, D. C. Martin, J Biomed Mater Res-A 71 (2004)Google Scholar
  19. P. M. Klinge, M. A. Vafa, T. Brinker, T. Brandis, G. F. Walter, T. Stieglitz, M. Samii, K. Wewetzer, Biomaterials 22, 17 (2001)Google Scholar
  20. J.G. Korvink, A. Greiner, Semiconductors for micro-and nanotechnology Wiley-VCH, Weinheim, 2002Google Scholar
  21. G.T.A. Kovacs, in Enabling Technologies for Cultured Neural Networks, ed. by D. Stenger, T. McKenna (Academic Press, Inc, San Diego, California, p. 121 (1994)Google Scholar
  22. T. D. Y. Kozai, D. R. Kipke, J Neurosci Meth 184, 2 (2009)CrossRefGoogle Scholar
  23. E. Lassner, W.-D. Schubert, Tungsten: properties, chemistry, technology of the element, alloys, and chemical compounds Kuwer academic / plenum Publishers, New York, (1999)Google Scholar
  24. K. A. Ludwig, J. D. Uram, J. Yang, D. C. Martin, D. R. Kipke, J Neural Eng 3, 1 (2006)CrossRefGoogle Scholar
  25. E. M. Maynard, C. T. Nordhausen, R. A. Normann, Electroen Clin. Neuro 102, 3 (1997)Google Scholar
  26. E. T. McAdams, J. Jossinet, Physiol Meas 16(Suppl A), 3 (1995)Google Scholar
  27. P. J. McCracken, A. Manduca, J. Felmlee, R. L. Ehman, Magn. Reson. Med. 53, 3 (2005)CrossRefGoogle Scholar
  28. A. Mercanzini, P. Colin, J.-C. Bensadoun, A. Bertsch, P. Renaud, IEEE Trans Biomed Eng 56, 7 (2009)CrossRefGoogle Scholar
  29. K. Najafi, K. D. Wise, IEEE J Solid-State Circuits 21, 6 (1986)CrossRefGoogle Scholar
  30. M. Nietzschmann, Implantation procedure for highly flexible neural probes of adjustable stiffness. Doctoral dissertation, University of Freiburg (2015)Google Scholar
  31. V. S. Polikov, P. A. Tresco, W. M. Reichert, J Neurosci Meth 148, 1 (2005)CrossRefGoogle Scholar
  32. V. S. Polikov, M. L. Block, J. M. Fellous, J. S. Hong, W. M. Reichert, Biomaterials 27 (2006)Google Scholar
  33. K. A. Potter, A. C. Buck, W. K. Self, J. R. Capadona, J Neural Eng 9, 4 (2012)CrossRefGoogle Scholar
  34. A. Raz, S. M. Grady, B. M. Krause, D. J. Uhlrich, K. A. Manning, M. I. Banks, Front Syst Neurosci 8 (2014)Google Scholar
  35. P. J. Rousche, R. A. Normann, J Neurosci Meth 82 (1998)Google Scholar
  36. B. Rubehn, T. Stieglitz, Biomaterials 31, 13 (2010)CrossRefGoogle Scholar
  37. B. Rubehn, C. Bosman, R. Oostenveld, P. Fries, T. Stieglitz, J Neural Eng 6, 3 (2009)CrossRefGoogle Scholar
  38. V. Sankar, E. Patrick, R. Dieme, J. C. Sanchez, A. Prasad, T. Nishida, Front Neuroeng 7 (2014)Google Scholar
  39. K. Seidl, M. Schwaerzle, I. Ulbert, H. P. Neves, O. Paul, P. Ruther, J Micromech S 21, 6 (2012)Google Scholar
  40. T. Stieglitz, B. Rubehn, C. Henle, S. Kisban, S. Herwik, P. Ruther, M. Schuettler, Prog Brain Res 175 (2009)Google Scholar
  41. J. Subbaroyan, D. C. Martin, D. R. Kipke, J Neural Eng 2, 4 (2005)CrossRefGoogle Scholar
  42. D. H. Szwarowski, M. D. Anderson, S. Retterer, A. J. Spence, M. Isaacson, H. G. Craighead, J. N. Tuner, W. Shain, Brain Res. 983, 1–2 (2003)CrossRefGoogle Scholar
  43. S. Takeuchi, D. Ziegler, Y. Yoshida, K. Mabuchi, T. Suzuki, Lab Chip 5, 5 (2005)CrossRefGoogle Scholar
  44. J. N. Turner, W. G. Shain, D. H. Szarowski, M. D. Andersen, S. Martins, M. S. Isaacson, H. G. Craighead, Exp Neurol 156 (1999)Google Scholar
  45. R. J. Vetter, J. C. Williams, J. F. Hetke, E. A. Nunamaker, D. R. Kipke, IEEE Trans Biomed Eng 51, 6 (2004)CrossRefGoogle Scholar
  46. H. A. Wark, R. Sharma, K. S. Mathews, E. Fernandez, J. Yoo, B. Christensen, P. Tresco, L. Rieth, F. Solzbacher, R. A. Normann, P. Tathireddy, J Neural Eng, 10, 4 (2013)CrossRefGoogle Scholar
  47. J. C. Williams, J. A. Hippensteel, J. Dilgen, W. G. Shain, D. R. Kipke, J Neural Eng 4, 4 (2007)CrossRefGoogle Scholar
  48. O. J. Winter, S. F. Cogan, J. F. Rizzo, J Biomed Mater Res-B, 81 (2007)Google Scholar
  49. K. D. Wise, J. B. Angell, A. Starr, IEEE Trans Biomed Eng 17, 3 (1970)Google Scholar
  50. Y. Xie, N. Martini, C. Hassler, R. D. Kirch, T. Stieglitz, A. Seifert, U. G. Hofmann, Front Neuroeng 7, 34 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Laboratory for Biomedical Microtechnology, Department of Microsystems EngineeringUniversity of FreiburgFreiburgGermany
  2. 2.Bernstein Center FreiburgFreiburgGermany
  3. 3.Institute for Neuroanatomy, Center for AnatomyUniversity of GoettingenGoettingenGermany
  4. 4.Department of NeurosurgeryUniversity Medical Center FreiburgFreiburgGermany
  5. 5.Brainlinks-BrainTools, Research Cluster of Excellence (EXC 1086)University of FreiburgFreiburgGermany

Personalised recommendations