Advertisement

Biomedical Microdevices

, 18:83 | Cite as

Comparison of Monofractal, Multifractal and gray level Co-occurrence matrix algorithms in analysis of Breast tumor microscopic images for prognosis of distant metastasis risk

  • Nemanja Rajković
  • Daniela Kolarević
  • Ksenija Kanjer
  • Nebojša T. Milošević
  • Dragica Nikolić-Vukosavljević
  • Marko Radulovic
Article

Abstract

Breast cancer prognosis is a subject undergoing intense study due to its high clinical relevance for effective therapeutic management and a great patient interest in disease progression. Prognostic value of fractal and gray level co-occurrence matrix texture analysis algorithms has been previously established on tumour histology images, but without any direct performance comparison. Therefore, this study was designed to compare the prognostic power of the monofractal, multifractal and co-occurrence algorithms on the same set of images. The investigation was retrospective, with 51 patients selected on account of non-metastatic IBC diagnosis, stage IIIB. Image analysis was performed on digital images of primary tumour tissue sections stained with haematoxylin/eosin. Bootstrap-corrected Cox proportional hazards regression P-values indicated a significant association with metastasis outcome of at least one of the features within each group. AUC values were far better for co-occurrence (0.66–0.77) then for fractal features (0.60–0.64). Correction by the split-sample cross-validation likewise indicated the generalizability only for the co-occurrence features, with their classification accuracies ranging between 67 and 72 %, while accuracies of monofractal and multifractal features were reduced to nearly random 52–55 %. These findings indicate for the first time that the prognostic value of texture analysis of tumour histology is less dependent on the morphological complexity of the image as measured by fractal analysis, but predominantly on the spatial distribution of the gray pixel intensities as calculated by the co-occurrence features.

Keywords

Breast cancer Histology texture Tumor GLCM Prognosis Metastasis Image analysis Fractal Multifractal Histomorphology 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Funding

This work was supported by the research Grant No. 175068 from the Ministry of Education and Science of the Republic of Serbia.

References

  1. M. Aldana, E. Balleza, S. Kauffman, O. Resendiz, J. Theor. Biol. 245, 433 (2007)MathSciNetCrossRefGoogle Scholar
  2. D. G. Altman, L. M. McShane, W. Sauerbrei, S. E. Taube, BMC Med 10, 51 (2012)Google Scholar
  3. H. K. Angell, N. Gray, C. Womack, D. I. Pritchard, R. W. Wilkinson, M. Cumberbatch, Br. J. Cancer 109, 1618 (2013)CrossRefGoogle Scholar
  4. S. Arivazhagan, L. Ganesan, Pattern Recogn. Lett. 24, 1513 (2003)CrossRefGoogle Scholar
  5. C. Atupelage, H. Nagahashi, M. Yamaguchi, M. Sakamoto, A. Hashiguchi, Anal Cell Pathol (Amst) 35, 123 (2012)CrossRefGoogle Scholar
  6. S. Banik, R. M. Rangayyan, J. E. Desautels, IEEE Transactions on Medical Imaging 30, 279 (2011)CrossRefGoogle Scholar
  7. A. Basavanhally, M. Feldman, N. Shih, C. Mies, J. Tomaszewski, S. Ganesan, A. Madabhushi, J Pathol Inform 2, S1 (2011)Google Scholar
  8. A.H. Beck, A.R. Sangoi, S. Leung, R.J. Marinelli, T.O. Nielsen, M.J. van de Vijver, R.B. West, M. van de Rijn, D. Koller, Sci Transl Med 3, 108ra113 (2011).Google Scholar
  9. H. J. Bloom, W. W. Richardson, Br. J. Cancer 11, 359 (1957)CrossRefGoogle Scholar
  10. B. Braverman, M. Tambasco, Comput Math Methods Med 2013, 262931 (2013)MathSciNetCrossRefGoogle Scholar
  11. Y. C. Cheng, G. Rondon, Y. Yang, T. L. Smith, J. L. Gajewski, M. L. Donato, E. J. Shpall, R. Jones, G. N. Hortobagyi, R. E. Champlin, N. T. Ueno, Biol Blood Marrow Transplant 10, 794 (2004)CrossRefGoogle Scholar
  12. A. B. Chhabra, C. Meneveau, R. V. Jensen, K. R. Sreenivasan, Phys Rev A 40, 5284 (1989)CrossRefGoogle Scholar
  13. D. R. Cox, J. R. Stat. Soc. Ser. B Methodol. 34, 187 (1972)Google Scholar
  14. M. Cristofanilli, V. Valero, A. U. Buzdar, S. W. Kau, K. R. Broglio, A. M. Gonzalez-Angulo, N. Sneige, R. Islam, N. T. Ueno, T. A. Buchholz, S. E. Singletary, G. N. Hortobagyi, Cancer 110, 1436 (2007)CrossRefGoogle Scholar
  15. J. E. Cutting, J. J. Garvin, Perception and Psychophysics 42, 365 (1987)CrossRefGoogle Scholar
  16. L. Dettori, L. Semler, Comput. Biol. Med. 37, 486 (2007)CrossRefGoogle Scholar
  17. J. M. Dunn, T. Hveem, M. Pretorius, D. Oukrif, B. Nielsen, F. Albregtsen, L. B. Lovat, M. R. Novelli, H. E. Danielsen, Br. J. Cancer 105, 1218 (2011)CrossRefGoogle Scholar
  18. B. Efron, Ann. Stat. 7, 1 (1979)MathSciNetCrossRefGoogle Scholar
  19. C. W. Elston, I. O. Ellis, Histopathology 41, 154 (2002)CrossRefGoogle Scholar
  20. T. R. Faisal, N. Hristozov, A. D. Rey, T. L. Western, D. Pasini, Phys Rev E Stat Nonlin Soft Matter Phys 86, 031921 (2012)CrossRefGoogle Scholar
  21. M. Galloway, Computer Graphics and Image Processing 4, 172 (1975)CrossRefGoogle Scholar
  22. A. Giordano, H. Gao, S. Anfossi, E. Cohen, M. Mego, B. N. Lee, S. Tin, M. De Laurentiis, C. A. Parker, R. H. Alvarez, V. Valero, N. T. Ueno, S. De Placido, S. A. Mani, F. J. Esteva, M. Cristofanilli, J. M. Reuben, Mol. Cancer Ther. 11, 2526 (2012)CrossRefGoogle Scholar
  23. W. Gomez, W. C. Pereira, A. F. Infantosi, IEEE Transactions on Medical Imaging 31, 1889 (2012)CrossRefGoogle Scholar
  24. R. M. Haralick, Proc. IEEE 67, 786 (1979)CrossRefGoogle Scholar
  25. R. Haralick, K. Shanmugam, I. H. Dinstein, Systems, Man and Cybernetics. IEEE Transactions on SMC-3, 610 (1973)Google Scholar
  26. K. Holli, A. L. Laaperi, L. Harrison, T. Luukkaala, T. Toivonen, P. Ryymin, P. Dastidar, S. Soimakallio, H. Eskola, Acad. Radiol. 17, 135 (2010)CrossRefGoogle Scholar
  27. A. C. Justice, K. E. Covinsky, J. A. Berlin, Ann. Intern. Med. 130, 515 (1999)CrossRefGoogle Scholar
  28. A. Karperien, H. Ahammer, H. F. Jelinek, Front. Cell. Neurosci. 7, 3 (2013)CrossRefGoogle Scholar
  29. M. R. Kell, M. Morrow, Breast Dis 22, 67 (2005)CrossRefGoogle Scholar
  30. D. Kolarevic, Z. Tomasevic, R. Dzodic, D. Gavrilovic, M. Zegarac, J BUON 17, 21 (2012)Google Scholar
  31. D. Kolarevic, Z. Tomasevic, R. Dzodic, K. Kanjer, D. N. Vukosavljevic, M. Radulovic, Biomed. Microdevices 17, 92 (2015)CrossRefGoogle Scholar
  32. A. Kurakin, Theor Biol Med Model 8, 4 (2011)CrossRefGoogle Scholar
  33. G. Landini, J. Microsc. 241, 1 (2011)MathSciNetCrossRefGoogle Scholar
  34. G. Landini, P. I. Murray, G. P. Misson, Investig. Ophthalmol. Vis. Sci. 36, 2749 (1995)Google Scholar
  35. A. Laurinavicius, A. Laurinaviciene, D. Dasevicius, N. Elie, B. Plancoulaine, C. Bor, P. Herlin, Anal Cell Pathol (Amst) 35, 75 (2012)CrossRefGoogle Scholar
  36. A. Laurinavicius, B. Plancoulaine, A. Laurinaviciene, P. Herlin, R. Meskauskas, I. Baltrusaityte, J. Besusparis, D. Dasevi Ius, N. Elie, Y. Iqbal, C. Bor, I. O. Ellis, Breast Cancer Res 16, R35 (2014)CrossRefGoogle Scholar
  37. C. Loukas, S. Kostopoulos, A. Tanoglidi, D. Glotsos, C. Sfikas, D. Cavouras, Comput Math Methods Med 2013, 829461 (2013)MathSciNetCrossRefGoogle Scholar
  38. B. B. Mandelbrot, The fractal geometry of nature (W.H. Freeman, New York, 1983)MATHGoogle Scholar
  39. K. Metze, Epigenomics 2, 601 (2010)CrossRefGoogle Scholar
  40. K. Metze, Expert. Rev. Mol. Diagn. 13, 719 (2013)CrossRefGoogle Scholar
  41. A. Mohd Khuzi, R. Besar, W. Wan Zaki, N. Ahmad, Biomed Imaging Interv J 5, e17 (2009)CrossRefGoogle Scholar
  42. V. Neumeister, S. Agarwal, J. Bordeaux, R. L. Camp, D. L. Rimm, Am. J. Pathol. 176, 2131 (2010)CrossRefGoogle Scholar
  43. F. Normant, C. Tricot, Phys Rev A 43, 6518 (1991)MathSciNetCrossRefGoogle Scholar
  44. M. Oger, M. Allaoui, N. Elie, J. Marnay, P. Herlin, B. Plancoulaine, J. Chasle, V. Becette, C. Bor-Angelier, Diagostic Pathology 8, S43 (2013)Google Scholar
  45. I. Pantic, S. Pantic, J. Paunovic, Microsc. Microanal. 18, 1054 (2012)CrossRefGoogle Scholar
  46. I. Pantic, G. Basta-Jovanovic, V. Starcevic, J. Paunovic, S. Suzic, Z. Kojic, S. Pantic, Nephrology (Carlton) 18, 117 (2013a)CrossRefGoogle Scholar
  47. I. Pantic, D. Nesic, D. Stevanovic, V. Starcevic, S. Pantic, V. Trajkovic, Microsc. Microanal. 19, 553 (2013b)CrossRefGoogle Scholar
  48. I. Pantic, J. Paunovic, G. Basta-Jovanovic, M. Perovic, S. Pantic, N. T. Milosevic, Exp. Gerontol. 48, 926 (2013c)CrossRefGoogle Scholar
  49. I. Pantic, S. Dacic, P. Brkic, I. Lavrnja, S. Pantic, T. Jovanovic, S. Pekovic, Microsc. Microanal. 20, 1373 (2014)CrossRefGoogle Scholar
  50. L. G. Perez-Rivas, J. M. Jerez, R. Carmona, V. de Luque, L. Vicioso, M. G. Claros, E. Viguera, B. Pajares, A. Sanchez, N. Ribelles, E. Alba, J. Lozano, PLoS One 9, e91884 (2014)CrossRefGoogle Scholar
  51. S. Petushi, F. U. Garcia, M. M. Haber, C. Katsinis, A. Tozeren, BMC Med Imaging 6, 14 (2006)CrossRefGoogle Scholar
  52. J. Pribic, J. Vasiljevic, K. Kanjer, Z. N. Konstantinovic, N. T. Milosevic, D. N. Vukosavljevic, M. Radulovic, Biomark. Med 9, 1279 (2015)CrossRefGoogle Scholar
  53. J. V. Raja, M. Khan, V. K. Ramachandra, O. Al-Kadi, Dento-Maxillo-Facial. Radiology 41, 475 (2012)Google Scholar
  54. K. Rajkovic, G. Bacic, D. Ristanovic, N. T. Milosevic, Biomed Res Int 2014, 812351 (2014)CrossRefGoogle Scholar
  55. R. Rouzier, P. Pronzato, E. Chereau, J. Carlson, B. Hunt, W. J. Valentine, Breast Cancer Res. Treat. 139, 621 (2013)CrossRefGoogle Scholar
  56. B. Sahiner, H. P. Chan, N. Petrick, M. A. Helvie, L. M. Hadjiiski, Med. Phys. 28, 1455 (2001)CrossRefGoogle Scholar
  57. S. J. Schnitt, Modern Pathology 23(Suppl 2), S60 (2010)CrossRefGoogle Scholar
  58. T. G. Smith Jr., G. D. Lange, W. B. Marks, J. Neurosci. Methods 69, 123 (1996)CrossRefGoogle Scholar
  59. G. Somlo, P. Frankel, W. Chow, L. Leong, K. Margolin, R. Morgan Jr., S. Shibata, P. Chu, S. Forman, D. Lim, P. Twardowski, J. Weitzel, J. Alvarnas, N. Kogut, J. Schriber, E. Fermin, Y. Yen, L. Damon, J. H. Doroshow, J Clin Oncol 22, 1839 (2004)CrossRefGoogle Scholar
  60. M. Tambasco, A. M. Magliocco, Hum. Pathol. 39, 740 (2008)CrossRefGoogle Scholar
  61. M. Tambasco, M. Eliasziw, A. M. Magliocco, J Transl Med 8, 140 (2010)CrossRefGoogle Scholar
  62. M. Tanase, P. Waliszewski, Journal of. Surg. Oncol. 112, 791 (2015)CrossRefGoogle Scholar
  63. N. T. Ueno, A. U. Buzdar, S. E. Singletary, F. C. Ames, M. D. McNeese, F. A. Holmes, R. L. Theriault, E. A. Strom, B. J. Wasaff, L. Asmar, D. Frye, G. N. Hortobagyi, Cancer Chemother. Pharmacol. 40, 321 (1997)CrossRefGoogle Scholar
  64. D. J. van Uden, H. W. van Laarhoven, A. H. Westenberg, J. H. de Wilt, C. F. Blanken-Peeters, Crit Rev Oncol Hematol 93, 116–126 (2014)CrossRefGoogle Scholar
  65. T. Vujasinovic, J. Pribic, K. Kanjer, N. T. Milosevic, Z. Tomasevic, Z. Milovanovic, D. Nikolic-Vukosavljevic, M. Radulovic, Microsc. Microanal. 21, 646 (2015)CrossRefGoogle Scholar
  66. E. R. Weibel, American Journal of Physiology 261, L361 (1991)Google Scholar
  67. Y. Xiang, V. R. Yingling, R. Malique, C. Y. Li, M. B. Schaffler, T. Raphan, Bone 40, 544 (2007)CrossRefGoogle Scholar
  68. Y. Zheng, B. M. Keller, S. Ray, Y. Wang, E. F. Conant, J. C. Gee, D. Kontos, Med. Phys. 42, 4149 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Biophysics, School of MedicineUniversity of BelgradeBelgradeSerbia
  2. 2.Institute for Oncology and RadiologyDaily Chemotherapy HospitalBelgradeSerbia
  3. 3.Department of Experimental OncologyInstitute for Oncology and RadiologyBelgradeSerbia

Personalised recommendations