Biomedical Microdevices

, 18:69 | Cite as

Design of optimal electrode geometries for dielectrophoresis using fitness based on simplified particle trajectories



Dielectrophoretic (DEP) forces applied to microscopic particles are highly dependent on the gradient of the electric field experienced by the particles. These DEP forces can be used to selectively capture and remove cells from fluid flows within a micro-channel above the DEP electrodes. Modification of the geometry of the electrodes that generate the electric field is the main approach available to increase the electric field gradient over a wide area, and hence increase the applied dielectrophoretic force. Optimized DEP forces increase attraction or repulsion of target cells from the electrode surface, enhancing the efficacy of electrodes for cell sorting applications. In this paper, we present a design approach, using genetic optimization techniques, to develop novel electrode geometries that effectively capture target particles. The performance of candidate electrode designs is evaluated by calculating simplified particle trajectories.


Dielectrophoresis Optimization Microelectrodes 



This research is financially supported by the Canadian Natural Sciences and Engineering Research Council (NSERC).

Supplementary material

10544_2016_85_MOESM1_ESM.pdf (529 kb)
(PDF 528 KB)


  1. C. Balan, C. Balut, L. Gheorghe, C. Gheorghe, E. Gheorghiu, G. Ursu, Experimental determination of blood permittivity and conductivity in simple shear flow. Clinical hemorheology and microcirculation. 30(3), 359–364 (2004)Google Scholar
  2. F.F. Becker, X.B. Wang, Y. Huang, R. Pethig, J. Vykoukal, P. Gascoyne, Separation of human breast cancer cells from blood by differential dielectric affinity. Proceedings of the National Academy of Sciences. 92 (3), 860–864 (1995)CrossRefGoogle Scholar
  3. M.P. Bendsoe, O. Sigmund. Topology Optimization: Theory, Methods and Applications (Springer, 2004)Google Scholar
  4. Y.A. Cengel, J.M. Cimbala. Fluid mechanics: fundamentals and applications (McGraw-Hill Higher Education, Boston, 2006)Google Scholar
  5. A.J. Danker, A. Rosenfeld, Blob detection by relaxation. IEEE Transactions on Pattern Analysis and Machine Intelligence. 1, 79–92 (1981)CrossRefGoogle Scholar
  6. N. Demierre, T. Braschler, P. Linderholm, U. Seger, H. van Lintel, P. Renaud, Characterization and optimization of liquid electrodes for lateral dielectrophoresis. Lab on a Chip. 7(3), 355–365 (2007)CrossRefGoogle Scholar
  7. L. Hartley, K. Kaler, R. Paul, Quadrupole levitation of microscopic dielectric particles. Journal of Electrostatics. 46(4), 233–246 (1999)CrossRefGoogle Scholar
  8. Y. Huang, R. Pethig, Electrode design for negative dielectrophoresis. Measurement Science and Technology. 2(12), 1142 (1991)CrossRefGoogle Scholar
  9. C. Huang, H. Liu, N. Bander, B. Kirby, Enrichment of prostate cancer cells from blood cells with a hybrid dielectrophoresis and immunocapture microfluidic system. Biomedical Microdevices. 15(6), 941–948 (2013). doi: 10.1007/s10544-013-9784-6 CrossRefGoogle Scholar
  10. L.S Jang, P.H. Huang, K.C. Lan, Single-cell trapping utilizing negative dielectrophoretic quadrupole and microwell electrodes. Biosensors and Bioelectronics. 24(12), 3637–3644 (2009)CrossRefGoogle Scholar
  11. TB Jones. Electromechanics of Particles (Cambridge University Press, 1995). doi: 10.1017/CBO9780511574498
  12. S. Kinio, Mills J.K., in Design of electrode topologies for dielectrophoresis through the use of genetic optimization with comsol multiphysics. 12th IEEE International Conference on Mechatronics and Automation, 2015. ICMA 2015, (2015)Google Scholar
  13. H. Li, R. Bashir, On the design and optimization of micro-fluidic dielectrophoretic devices: a dynamic simulation study. Biomedical microdevices. 6(4), 289–295 (2004)CrossRefGoogle Scholar
  14. J. Lin, J. Yeow, Enhancing dielectrophoresis effect through novel electrode geometry. Biomedical Microdevices. 9(6), 823–831 (2007)CrossRefGoogle Scholar
  15. C. Liu. Foundations of MEMS, 2nd edn (Pearson Education Limited, 2011)Google Scholar
  16. M.C. Miller, G.V. Doyle, L.W. Terstappen, Significance of circulating tumor cells detected by the cellsearch system in patients with metastatic breast colorectal and prostate cancer. Journal of oncology, 2010 (2009)Google Scholar
  17. M. Mitchell. An introduction to genetic algorithms (MIT press, 1998)Google Scholar
  18. V. Monticue, AP Physics 1 Textbook. OpenStax. (2015)
  19. Y.K. Ren, D. Morganti, H.Y. Jiang, A. Ramos, H. Morgan, Electrorotation of metallic microspheres. Langmuir. 27(6), 2128–2131 (2011)CrossRefGoogle Scholar
  20. L. Rozitsky, A. Fine, D. Dado, S. Nussbaum-Ben-Shaul, S. Levenberg, G. Yossifon, Quantifying continuous-flow dielectrophoretic trapping of cells and micro-particles on micro-electrode array. Biomedical Microdevices. 15(5), 859–865 (2013). doi: 10.1007/s10544-013-9773-9 CrossRefGoogle Scholar
  21. S. Shim, K. Stemke-Hale, J. Noshari, F.F. Becker, P.R. Gascoyne, Dielectrophoresis has broad applicability to marker-free isolation of tumor cells from blood by microfluidic systems. Biomicrofluidics. 7(1), 011–808 (2013a)Google Scholar
  22. S. Shim, K. Stemke-Hale, A.M. Tsimberidou, J. Noshari, T.E. Anderson, P.R. Gascoyne, Antibody-independent isolation of circulating tumor cells by continuous-flow dielectrophoresis. Biomicrofluidics. 7(1), 011–807 (2013b)Google Scholar
  23. S.N. Sivanandam, S.N. Deepa. Introduction to Genetic Algorithms, 1st ed (Springer Publishing Company, Incorporated, 2007)Google Scholar
  24. R.S. Thomas, H. Morgan, N.G. Green, Negative dep traps for single cell immobilisation. Lab on a Chip. 9(11), 1534–1540 (2009)CrossRefGoogle Scholar
  25. J. Voldman, Electrical forces for microscale cell manipulation. Annu Rev Biomed Eng. 8, 425–454 (2006)CrossRefGoogle Scholar
  26. G. Vona, A. Sabile, M. Louha, V. Sitruk, S. Romana, K. Schütze, F. Capron, D. Franco, M. Pazzagli, M. Vekemans, et al, Isolation by size of epithelial tumor cells: a new method for the immunomorphological and molecular characterization of circulating tumor cells. The American journal of pathology. 156(1), 57–63 (2000)CrossRefGoogle Scholar
  27. Y. Wakizaka, M. Hakoda, N. Shiragami, Effect of electrode geometry on dielectrophoretic separation of cells. Biochemical Engineering Journal. 20(1), 13–19 (2004)CrossRefGoogle Scholar
  28. X.B. Wang, J. Yang, Y. Huang, J. Vykoukal, F.F. Becker, P.R. Gascoyne, Cell separation by dielectrophoretic field-flow-fractionation. Analytical Chemistry. 72(4), 832–839 (2000)CrossRefGoogle Scholar
  29. F. White. Fluid Mechanics, 7th Edition (McGraw -Hill, New York, 2011)Google Scholar
  30. G. Wu, R.G. Cooks, Z. Ouyang, Geometry optimization for the cylindrical ion trap: field calculations, simulations and experiments. International Journal of mass spectrometry. 241(2), 119–132 (2005)CrossRefGoogle Scholar
  31. G.H. Yoon, J. Park, Topological design of electrode shapes for dielectrophoresis based devices. Journal of Electrostatics. 68(6), 475–486 (2010)CrossRefGoogle Scholar
  32. Z. Zhang, S. Nagrath, Microfluidics and cancer: are we there yet?. Biomedical Microdevices. 15(4), 595–609 (2013). doi: 10.1007/s10544-012-9734-8 CrossRefGoogle Scholar
  33. H. Zou, S. Mellon, R. Syms, K Tanner, 2-dimensional mems dielectrophoresis device for osteoblast cell stimulation. Biomedical Microdevices. 8(4), 353–359 (2006). doi: 10.1007/s10544-006-9818-4 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Mechanical and Industrial EngineeringUniversity of TorontoTorontoCanada

Personalised recommendations