Controlled regular locomotion of algae cell microrobots

  • Shuangxi Xie
  • Niandong Jiao
  • Steve Tung
  • Lianqing Liu


Algae cells can be considered as microrobots from the perspective of engineering. These organisms not only have a strong reproductive ability but can also sense the environment, harvest energy from the surroundings, and swim very efficiently, accommodating all these functions in a body of size on the order of dozens of micrometers. An interesting topic with respect to random swimming motions of algae cells in a liquid is how to precisely control them as microrobots such that they swim according to manually set routes. This study developed an ingenious method to steer swimming cells based on the phototaxis. The method used a varying light signal to direct the motion of the cells. The swimming trajectory, speed, and force of algae cells were analyzed in detail. Then the algae cell could be controlled to swim back and forth, and traverse a crossroad as a microrobot obeying specific traffic rules. Furthermore, their motions along arbitrarily set trajectories such as zigzag, and triangle were realized successfully under optical control. Robotize algae cells can be used to precisely transport and deliver cargo such as drug particles in microfluidic chip for biomedical treatment and pharmacodynamic analysis. The study findings are expected to bring significant breakthrough in biological drives and new biomedical applications.


Algae cell Microrobot Phototaxis Directional control Bioactuator 



This research work was partially supported by the National Natural Science Foundation of China (Grant Nos. 61573339, 61304251 and 61503258), and the CAS-SAFEA International Partnership Program for Creative Research Teams.


  1. G. D. Bachand, S. B. Rivera, A. Carroll-Portillo, H. Hess, M. Bachand, Small 2, 381 (2006)CrossRefGoogle Scholar
  2. Á. Barroso, S. Landwerth, M. Woerdemann, C. Alpmann, T. Buscher, M. Becker, A. Studer, C. Denz, Biomed Microdevices 17, 1–8 (2015)CrossRefGoogle Scholar
  3. B. Behkam, M. Sitti, Appl Phys Lett 93, 223901 (2008)CrossRefGoogle Scholar
  4. N. F. Bouxsein, A. Carroll-Portillo, M. Bachand, D. Y. Sasaki, G. D. Bachand, Langmuir 29, 2992 (2013)CrossRefGoogle Scholar
  5. C. Y. Chen, C. F. Chen, Y. Yi, L. J. Chen, L. F. Wu, T. Song, Biomed Microdevices 16, 761–770 (2014)CrossRefGoogle Scholar
  6. S. Cho, S. J. Park, S. Y. Ko, J. O. Park, S. Park, Biomed Microdevices 14, 1019–1025 (2012)CrossRefGoogle Scholar
  7. M. R. Edwards, R. W. Carlsen, M. Sitti, Appl Phys Lett 102, 143701 (2013)CrossRefGoogle Scholar
  8. R. Fernandes, M. Zuniga, F. R. Sassine, M. Karakoy, D. H. Gracias, Small 7, 588 (2011)CrossRefGoogle Scholar
  9. K. W. Foster, R. D. Smyth, Microbiol Rev 44, 572 (1980)Google Scholar
  10. Y. Hiratsuka, M. Miyata, T. Tada, T. Q. P. Uyeda, Proc Natl Acad Sci U S A 103, 13618 (2006)CrossRefGoogle Scholar
  11. Y. Jia, W. Dong, X. Feng, J. Li, J. Li, Nanoscale 7, 82 (2015)CrossRefGoogle Scholar
  12. D. Kim, A. Liu, E. Diller, M. Sitti, Biomed Microdevices 14, 1009–1017 (2012)CrossRefGoogle Scholar
  13. M. Kojima, Z. Zhang, M. Nakajima, K. Ooe, T. Fukuda, Sensors Actuators B Chem 183, 395 (2013)CrossRefGoogle Scholar
  14. E. Lauga, T. R. Powers, Rep Prog Phys 72, 096601 (2009)MathSciNetCrossRefGoogle Scholar
  15. K. Y. Ma, P. Chirarattananon, S. B. Fuller, R. J. Wood, Science 340, 603 (2013)CrossRefGoogle Scholar
  16. S. Martel, C. C. Tremblay, S. Ngakeng, G. Langlois, Appl Phys Lett 89, 233904 (2006)CrossRefGoogle Scholar
  17. S. Martel, O. Felfoul, J. B. Mathieu, A. Chanu, S. Tamaz, M. Mohammadi, M. Mankiewicz, N. Tabatabaei, Int J Robot Res 28, 1169–1182 (2009a)CrossRefGoogle Scholar
  18. S. Martel, M. Mohammadi, O. Felfoul, Z. Lu, P. Pouponneau, Int J Robot Res 28, 571–582 (2009b)CrossRefGoogle Scholar
  19. V. D. Nguyen, J. W. Han, Y. J. Choi, S. Cho, S. Zheng, S. Y. Ko, J. O. Park, S. Park, Sensors Actuators B Chem 224, 217 (2016)CrossRefGoogle Scholar
  20. S. J. Park, H. Bae, J. Kim, B. Lim, J. Park, S. Park, Lab Chip 10, 1706 (2010)CrossRefGoogle Scholar
  21. S. J. Park, Y. K. Lee, S. Cho, S. Uthaman, I. K. Park, J. J. Min, S. Y. Ko, J. O. Park, S. Park, Biotechnol Bioeng 112, 769 (2015)CrossRefGoogle Scholar
  22. M. Persson, M. Gullberg, C. Tolf, A. M. Lindberg, A. Månsson, A. Kocer, PLoS One 8, e55931 (2013)CrossRefGoogle Scholar
  23. Y. Rondelez, G. Tresset, T. Nakashima, Y. Kato-Yamada, H. Fujita, S. Takeuchi, H. Noji, Nature 433, 773 (2005)CrossRefGoogle Scholar
  24. K. Shibata, M. Miura, Y. Watanabe, K. Saito, A. Nishimura, K. Furuta, Y. Y. Toyoshima, PLoS One 7, e42990 (2012)CrossRefGoogle Scholar
  25. H. L. Sweeney, A. Houdusse, Annu Rev Biophys 39, 539 (2010)CrossRefGoogle Scholar
  26. M. C. Tarhan, R. Yokokawa, F. Morin, H. Fujita, ChemPhysChem 14, 1618 (2013)CrossRefGoogle Scholar
  27. M. Ternes, C. P. Lutz, C. F. Hirjibehedin, F. J. Giessibl, A. J. Heinrich, Science 319, 1066 (2008)CrossRefGoogle Scholar
  28. M. Tortonese, R. C. Barrett, C. F. Quate, Appl Phys Lett 62, 834 (1993)CrossRefGoogle Scholar
  29. M. A. Traoré, A. Sahari, B. Behkam, Phys Rev E 84, 061908 (2011)CrossRefGoogle Scholar
  30. D. B. Weibel, P. Garstecki, D. Ryan, W. R. DiLuzio, M. Mayer, J. E. Seto, G. M. Whitesides, Proc Natl Acad Sci U S A 102, 11963 (2005)CrossRefGoogle Scholar
  31. Y. Zhang, Y. Gao, L. Liu, N. Xi, Y. Wang, L. Ma, Z. Dong, U. C. Wejinya, Appl Phys Lett 101, 213101 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.State Key Laboratory of Robotics, Shenyang Institute of AutomationChinese Academy of SciencesShenyangPeople’s Republic of China
  2. 2.University of Chinese Academy of SciencesBeijingPeople’s Republic of China
  3. 3.Department of Mechanical EngineeringUniversity of ArkansasFayettevilleUSA

Personalised recommendations