Advertisement

Long-term characterization of neural electrodes based on parylene-caulked polydimethylsiloxane substrate

  • Jinmo Jeong
  • Namsun Chou
  • Sohee Kim
Article

Abstract

This study investigates the mechanical and long-term electrical properties of parylene-caulked polydimethylsiloxane (PDMS) as a substrate for implantable electrodes. The parylene-caulked PDMS is a structure where particles of parylene fill the porous surface of PDMS. This material is expected to have low water absorption and desirable mechanical properties such as flexibility and elasticity that are beneficial in many biomedical applications. To evaluate the mechanical property and electrical stability of parylene-caulked PDMS for potential in-vivo uses, tensile tests were conducted firstly, which results showed that the mechanical strength of parylene-caulked PDMS was comparable to that of native PDMS. Next, surface electrodes based on parylene-caulked PDMS were fabricated and their impedance was measured in phosphate-buffered saline (PBS) solution at 36.5 °C over seven months. The electrodes based on parylene-caulked PDMS exhibited the improved stability in impedance over time than native PDMS. Thus, with improved electrical stability in wet environment and preserved mechanical properties of PDMS, the electrodes based on parylene-caulked PDMS are expected to be suitable for long-term in-vivo applications.

Keywords

Neural electrode Polydimethylsiloxane (PDMS) Parylene Parylene-caulked PDMS Stretchability Electrochemical impedance spectroscopy (EIS) Stability 

Notes

Acknowledgments

This research was supported by grants from the Basic Science Research Program of the National Research Foundation (2014R1A1A3050285), the Integrative Aging Research Center of the Gwangju Institute of Science and Technology (GIST), DGIST MIREBraiN Program (2016010043) and R&D Program (16-BD-0404) funded by the Ministry of Science, ICT and Future Planning, Korea.

References

  1. ASTM D412-06a, Standard test methods for vulcaizaed rubber and thermoplastic elastomers-tension, www.astm.org (2012).
  2. M. J. Baker, J. Trevisan, P. Bassan, R. Bhargava, H. J. Butler, K. M. Dorling, P. R. Fielden, S. W. Fogarty, N. J. Fullwood, K. A. Heys, C. Hughes, P. Lasch, P. L. Martin-Hirsch, B. Obinaju, G. D. Sockalingum, J. Sulé-Suso, R. J. Strong, M. J. Walsh, B. R. Wood, P. Gardner, F. L. Martin, Nat Protoc 9, 1771 (2014)CrossRefGoogle Scholar
  3. D. Byun, S. J. Cho, S. Kim, J Micromech Microeng 23, 125010 (2013)CrossRefGoogle Scholar
  4. E. Castagnola, A. Ansaldo, E. Maggiolini, T. Ius, M. Skrap, D. Ricci, L. Fadiga, Front Neuroeng 7, 8 (2014)CrossRefGoogle Scholar
  5. V. Castagnola, E. Descamps, A. Lecestre, L. Dahan, J. Remaud, L. G. Nowak, C. Bergaud, Biosens Bioelectron 67, 450 (2015)CrossRefGoogle Scholar
  6. K. C. Cheung, Biomed Microdevices 9, 923 (2007)CrossRefGoogle Scholar
  7. K. M. Choi, J. A. Rogers, J Am Chem Soc 125, 4060 (2003)CrossRefGoogle Scholar
  8. N. Chou, J. Jeong, S. Kim, J Micromech Microeng 23, 125035 (2013a)CrossRefGoogle Scholar
  9. N. Chou, S. Yoo, S. Kim, IEEE Trans Neural Syst Rehabil Eng 21, 544 (2013b)CrossRefGoogle Scholar
  10. W. Chun, N. Chou, S. Cho, S. Yang, S. Kim, Prog Org Coat 77, 537 (2014)CrossRefGoogle Scholar
  11. E. M. Davis, N. M. Benetatos, W. F. Regnault, K. I. Winey, Y. A. Elabd, Polymer 52, 5378 (2011)CrossRefGoogle Scholar
  12. O. Graudejus, P. Görrn, S. Wagner, ACS Appl Mater Interfaces 2, 1927 (2010)CrossRefGoogle Scholar
  13. P. Grosse, Clin Neurophysiol 113, 1523 (2002)CrossRefGoogle Scholar
  14. L. Guo, G. S. Guvanasen, X. Liu, C. Tuthill, T. R. Nichols, S. P. DeWeerth, IEEE Trans Biomed Circuits Syst 7, 1 (2013)CrossRefGoogle Scholar
  15. R. R. Harrison, IEEE Cust Integr Circuits Conf (IEEE, 2007), 115–122 (2007)Google Scholar
  16. J. M. Hsu, L. Rieth, R. A. Normann, P. Tathireddy, F. Solzbacher, IEEE Trans Biomed Eng 56, 23 (2009)CrossRefGoogle Scholar
  17. J. Jean, A. Wang, V. Bulović, Org Electron 31, 120 (2016)CrossRefGoogle Scholar
  18. J. Jeong, N. Chou, and S. Kim. Int IEEE/EMBS Conf Neural Eng NER 911 (2013).Google Scholar
  19. X. Kang, J.-Q. Liu, H. Tian, B. Yang, Y. Nuli, C. Yang, J Microelectromech Syst 24, 319 (2015)CrossRefGoogle Scholar
  20. X. Kang, J. Liu, H. Tian, B. Yang, Y. NuLi, C. Yang, Sensors Actuators B Chem 225, 267 (2016)CrossRefGoogle Scholar
  21. S. J. Kim, I. T. Lee, H.-Y. Lee, Y. H. Kim, Smart Mater Struct 15, 1540 (2006)CrossRefGoogle Scholar
  22. B. J. Kim, C. A. Gutierrez, E. Meng, J Microelectromech Syst 24, 1534 (2015)CrossRefGoogle Scholar
  23. J. T. W. Kuo, B. J. Kim, S. A. Hara, C. D. Lee, C. A. Gutierrez, T. Q. Hoang, E. Meng, Lab Chip 13, 554 (2013)CrossRefGoogle Scholar
  24. K. Lee, A. Singh, J. He, S. Massia, B. Kim, G. Raupp, Sensors Actuators B Chem 102, 67 (2004)CrossRefGoogle Scholar
  25. Y. Lei, Y. Liu, W. Wang, W. Wu, Z. Li, Lab Chip 11, 1385 (2011)CrossRefGoogle Scholar
  26. M. Ludvigsson, J. Lindgren, J. Tegenfeldt, Electrochim Acta 45, 2267 (2000)CrossRefGoogle Scholar
  27. A. Mercanzini, K. Cheung, D. L. Buhl, M. Boers, A. Maillard, P. Colin, J. C. Bensadoun, A. Bertsch, P. Renaud, Sensors actuators. A Phys 143, 90 (2008)Google Scholar
  28. R. A. Normann, Nat Clin Pract Neurol 3, 444 (2007)CrossRefGoogle Scholar
  29. M. Ochoa, P. Wei, A. J. Wolley, K. J. Otto, B. Ziaie, Biomed Microdevices 15, 437 (2013)CrossRefGoogle Scholar
  30. D. C. Rodger, A. J. Fong, W. Li, H. Ameri, A. K. Ahuja, C. Gutierrez, I. Lavrov, H. Zhong, P. R. Menon, E. Meng, J. W. Burdick, R. R. Roy, V. R. Edgerton, J. D. Weiland, M. S. Humayun, Y. C. Tai, Sensors actuators. B Chem 132, 449 (2008)Google Scholar
  31. F. J. Rodri’guez, D. Ceballos, M. Schu¨ttler, A. Valero, E. Valderrama, T. Stieglitz, X. Navarro, J Neurosci Methods 98, 105 (2000)CrossRefGoogle Scholar
  32. P. J. Rousche, D. S. Pellinen, D. P. Pivin, J. C. Williams, R. J. Vetter, D. R. Kipke, IEEE Trans Biomed Eng 48, 361 (2001)CrossRefGoogle Scholar
  33. B. Rubehn, T. Stieglitz, Biomaterials 31, 3449 (2010)CrossRefGoogle Scholar
  34. Y. Rui, J. Liu, Y. Wang, C. Yang, Microsyst Technol 17, 437 (2011)CrossRefGoogle Scholar
  35. J. P. Seymour, Y. M. Elkasabi, H. Y. Chen, J. Lahann, D. R. Kipke, Biomaterials 30, 6158 (2009)CrossRefGoogle Scholar
  36. T. Stieglitz, M. Schuettler, K. P. Koch, IEEE Eng Med Biol Mag 24, 58 (2005)CrossRefGoogle Scholar
  37. M. W. Toepke, D. J. Beebe, Lab Chip 6, 1484 (2006)CrossRefGoogle Scholar
  38. A. V. Vasenkov, J Mol Model 17, 3219 (2011)CrossRefGoogle Scholar
  39. R. P. Von Metzen, T. Stieglitz, Biomed Microdevices 15, 727 (2013)CrossRefGoogle Scholar
  40. S. Yamagiwa, M. Ishida, T. Kawano, Appl Phys Lett 107, 083502 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.School of MechatronicsGwangju Institute of Science and Technology (GIST)GwangjuRepublic of Korea
  2. 2.Department of Robotics EngineeringDaegu Gyeongbuk Institute of Science and Technology (DGIST)DaeguRepublic of Korea

Personalised recommendations