Biomedical Microdevices

, 18:20 | Cite as

Polymeric check valve with an elevated pedestal for precise cracking pressure in a glaucoma drainage device

  • Chang-Ju Park
  • Dong-Seong Yang
  • Jung-Joon Cha
  • Jong-Hyun Lee


This paper presents the design, fabrication, and characterization of a polymeric micro check valve for a glaucoma drainage device (GDD) featuring the precise regulation of intraocular pressure (IOP) and effective aqueous humor turnover (AHT). The pedestal, slightly elevated by selective coating of a parylene C film, induces pre-stress in the thin valve membrane, which enhances the predictability of the cracking pressure of the GDD. The proposed GDD comprises a cannula and a normally closed polymeric micro check valve, which are made of PDMS, a biocompatible polymer, with three layers: top (cover), intermediate (thin valve membrane), and bottom (base plate). A feedback channel, located between the top and intermediate layers, prevents reverse flow by feeding the pressure of the outlet channel back to the thin valve membrane. To achieve a precise cracking pressure and sufficient drainage of humor for humans, the thicknesses of the valve membrane and parylene C film are designed to be 58 μm and 1 μm, respectively, which are confirmed using a COMSOL simulation. The experimental results show that the cracking pressure of the fabricated GDD lies within the range of normal IOP (1.33–2.67 kPa). The forward flow rate (drainage rate), 4.3 ± 0.9 μL/min at 2.5 kPa, is adequate to accommodate the rate of AHT in a normal human eye (2.4 ± 0.6 μL/min). The reverse flow was not observed when a hydrostatic pressure of up to 4 kPa was applied to the outlet and the feedback channel.


Glaucoma drainage device Micro check valve Parylene C film Pre-stress Feedback channel Aqueous humor 



This work was supported partially by BioNano Health-Guard Research Center funded by the Ministry of Science, ICT & Future Planning (MSIP) of Korea as “Global Frontier Project” (Grant Number H-GUARD_ERND2013M3A6B2078957) and by the “Basic Research Projects in High-tech Industrial Technology” through a grant provided by GIST in 2015.


  1. D. R. Anderson, Am J. Ophthalmol. 108, 485–495 (1989)CrossRefGoogle Scholar
  2. I. E. Araci, B. Su, S. R. Quake, Y. Mandel, Nat. Med 20, 1074–1078 (2014)CrossRefGoogle Scholar
  3. B. H. Bae, H. S. Kee, S. H. Kim, Y. Lee, T. S. Sim, Y. K. Kim, K. H. Park, J. Micromech. Microeng 13, 613–619 (2003)CrossRefGoogle Scholar
  4. R. F. Brubaker, The Glaucomas 2nd Edition, edited by R. Ritch, M. B. Shields, and T. Krupin, 337 (1989)Google Scholar
  5. Y. Chen, W. Pei, R. Tang, S. Chen, H. Chen, Sensors Actuators A 189, 143–150 (2013)CrossRefGoogle Scholar
  6. A. L. Coleman, R. Hill, M. R. Wilson, N. Choplin, R. K. Neumann, M. Tam, J. Bacharach, W. C. Panek, Am J. Ophthalmol. 120, 23–31 (1995)CrossRefGoogle Scholar
  7. K. F. Damji, R. H. Muni, R. M. Munger, J. Glaucoma 12, 69–80 (2003)CrossRefGoogle Scholar
  8. M. Goel, R. G. Picciani, R. K. Lee, S. K. Bhattacharya, Open Ophthalmol J. 4, 52–59 (2010)CrossRefGoogle Scholar
  9. N. L. Jeon, D. T. Chiu, C. J. Wargo, H. Wu, I. S. Choi, J. R. Anderson, G. M. Whitesides, Biomed. Microdevices 4, 117–121 (2002)CrossRefGoogle Scholar
  10. J.-G. Joseph, Polym. Adv. Technol. 17, 395–418 (2006)CrossRefGoogle Scholar
  11. S. H. Kim, J. H. Moon, J. H. Kim, S. M. Jeong, S.-H. Lee, Biomed Eng Lett 1, 199–203 (2011)CrossRefGoogle Scholar
  12. T. Krupin, S. M. Podos, B. Becker, J. B. Newkirk, Am J. Ophthalmol. 81, 232–235 (1976)CrossRefGoogle Scholar
  13. Y. Lei, Y. Liu, W. Wang, W. Wu, Z. Li, Lab Chip 11, 1385–1388 (2011)CrossRefGoogle Scholar
  14. K. S. Lim, B. D. S. Allan, A. W. Lloyd, A. Muir, P. T. Khaw, Br. J. Ophthalmol. 82, 1083–1089 (1998)CrossRefGoogle Scholar
  15. C. H. Lin, P. J. Chen, B. Yu, M. Humayun, and Y. C. Tai, Presented in part at the 22nd International Conference on Micro Electro Mechanical Systems 196–199 (2009)Google Scholar
  16. S. A. Mona, S. T. Suman, W. H. Alex, E. C. Jamie, P. B. Kathryn, Invest. Ophthalmol. Vis. Sci. 54, 2108–2114 (2013)CrossRefGoogle Scholar
  17. S. Moon, S. Im, J. An, C. J. Park, H. G. Kim, S. W. Park, H. I. Kim, J. H. Lee, Biomed. Microdevices 14, 325–335 (2012)CrossRefGoogle Scholar
  18. K. W. Oh, C. H. Ahn, J. Micromech. Microeng 16, 13–39 (2006)CrossRefGoogle Scholar
  19. C.-J. Park, J. Lee, J.-Y. An, B. Mun, S. Moon, and J.-H. Lee, presented in part at the Proceedings of the International Conference on Biomedical Electronics and Devices 64–67 (2013)Google Scholar
  20. H. A. Quigley, A. T. Broman, Br. J. Ophthalmol. 90, 262–267 (2006)CrossRefGoogle Scholar
  21. C. I. Rogers, J. B. Oxborrow, R. R. Anderson, L.-F. Tsai, G. P. Nordin, A. T. Woolley, Sensors Actuators B 191, 438–444 (2014)CrossRefGoogle Scholar
  22. M. Rollet, Rev Gen Ophthalmol. 25, 481 (1906)Google Scholar
  23. P. Shuchi, R. P. Louis, Semin. Ophthalmol. 25, 265–270 (2010)CrossRefGoogle Scholar
  24. R. Varma, P. P. Lee, I. Goldberg, S. Kotak, Am J. Ophthalmol. 152, 515–522 (2011)CrossRefGoogle Scholar
  25. X. Q. Wang and Y. C. Tai, presented in part at the 13th Annual International Conference on Micro Electro Mechanical Systems 68–73 (2000)Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Chang-Ju Park
    • 1
  • Dong-Seong Yang
    • 1
  • Jung-Joon Cha
    • 1
  • Jong-Hyun Lee
    • 1
  1. 1.Department of Medical System EngineeringGwangju Institute of Science and TechnologyGwangjuRepublic of Korea

Personalised recommendations