Skip to main content
Log in

A microfluidic cell culture device (μFCCD) to culture epithelial cells with physiological and morphological properties that mimic those of the human intestine

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Physiological and morphological properties of the human intestine cannot be accurately mimicked in conventional culture devices such as well plates and petri dishes where intestinal epithelial cells form a monolayer with loose contacts among cells. Here, we report a novel microfluidic cell culture device (μFCCD) that can be used to culture cells as a human intestinal model. This device enables intestinal epithelial cells (Caco-2) to grow three-dimensionally on a porous membrane coated with fibronectin between two polydimethylsiloxane (PDMS) layers. Within 3 days, Caco-2 cells cultured in the μFCCD formed villi- and crypt-like structures with small intercellular spaces, while individual cells were tightly connected to one another through the expression of the tight junction protein occludin, and were covered with a secreted mucin, MUC-2. Caco-2 cells cultured in the μFCCD for 3 days were less susceptible to bacterial attack than those cultured in transwell plates for 21 days. μFCCD-cultured Caco-2 cells also displayed physiologically relevant absorption and paracellular transport properties. These results suggest that our intestinal model more accurately mimics the morphological and physiological properties of the intestine in vivo than the conventional transwell culture model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • M. Andrianifahanana, N. Moniaux, S.K. Batra, Regulation of mucin expression: mechanistic aspects and implications for cancer and inflammatory diseases. Biochim. Biophys. Acta 1765(2), 189–222 (2006)

    Google Scholar 

  • P. Artursson, K. Palm, K. Luthman, Caco-2 monolayers in experimental and theoretical predictions of drug transport. Adv. Drug Deliv. Rev. 46(1–3), 27–43 (2001)

    Article  Google Scholar 

  • M.D. Basson, Paradigms for mechanical signal transduction in the intestinal epithelium. Category: molecular, cell, and developmental biology. Digestion 68(4), 217–225 (2003)

    Article  Google Scholar 

  • J.M. Biazik, K.A. Jahn, Y. Su, Y.N. Wu, F. Braet, Unlocking the ultrastructure of colorectal cancer cells in vitro using selective staining. World J. Gastroenterol. 16(22), 2743–2753 (2010)

    Article  Google Scholar 

  • X.D. Bu, N. Li, X.Q. Tian, P.L. Huang, Caco-2 and LS174T cell lines provide different models for studying mucin expression in colon cancer. Tissue Cell 43(201), 201–206 (2011)

    Article  Google Scholar 

  • J.C. Byrd, R.S. Bresalier, Mucins and mucin binding proteins in colorectal cancer. Cancer Metastasis Rev. 23(1–2), 77–99 (2004)

    Article  Google Scholar 

  • M. Dickson, J.P. Gagnon, Key factors in the rising cost of new drug discovery and development. Nat. Rev. Drug Discov. 3(5), 417–429 (2004)

    Article  Google Scholar 

  • L.C. Duffy, Interactions mediating bacterial translocation in the immature intestine. J. Nutr. 130(2S Suppl), 432S–436S (2000)

    Google Scholar 

  • M.B. Esch, J.H. Sung, J. Yang, C. Yu, J. Yu, J.C. March, M.L. Shuler, On chip porous polymer membranes for integration of gastrointestinal tract epithelium with microfluidic ‘body-on-a-chip’ devices. Biomed. Microdevices 14(5), 895–906 (2012)

    Article  Google Scholar 

  • G.J. Feldman, J.M. Mullin, M.P. Ryan, Occludin: structure, function and regulation. Adv. Drug Deliv. Rev. 57(6), 883–917 (2005)

    Article  Google Scholar 

  • B.E. Goodman, Insights into digestion and absorption of major nutrients in humans. Adv. Physiol. Educ. 34(20), 44–53 (2010)

    Article  Google Scholar 

  • B.M. Gumbiner, Structure, biochemistry, and assembly of epithelial tight junctions. Am. J. Physiol. 253(6 Pt 1), C749–C758 (1987)

    Google Scholar 

  • B.M. Gumbiner, Breaking through the tight junction barrier. J. Cell Biol. 123(6 Pt 2), 1631–1633 (1993)

    Article  Google Scholar 

  • P. Guo, A.M. Weinstein, S. Weinbaum, A hydrodynamic mechanosensory hypothesis for brush border microvilli. Am J Physiol Renal Physiol. 279(4), F698–F712 (2000)

    Google Scholar 

  • J. Hansen, L. Andrew, R. Ruedy, M. Sato, Potential climate impact of mount pinatubo eruption. Geophys. Res. Lett. 19(2), 215–218 (1992)

    Article  Google Scholar 

  • D.H. Huh, Y.S. Torisawa, G.A. Hamilton, H.J. Kim, D.E. Ingber, Microengineered physiological biomimicry: organs-on-chips. Lab Chip 12(12), 2156–2164 (2012)

    Article  Google Scholar 

  • Y. Imura, Y. Asano, K. Sato, E. Yoshimura, A microfluidic system to evaluate intestinal absorption. Anal. Sci. 25, 1403–1407 (2009)

    Article  Google Scholar 

  • T. Ishikawa, T. Sato, G. Mohit, Y. Imai, T. Yamaguchi, Transport phenomena of microbial flora in the small intestine with peristalsis. J. Theor. Biol. 279(1), 63–73 (2011)

    Article  Google Scholar 

  • K. Izumikawa, Y. Hirakata, T. Yamaguchi, H. Takemura, S. Maesaki, K. Tomono, S. Igimi, M. Kaku, Y. Yamada, S. Kohno, S. Kamihira, Escherichia coli O157 interactions with human intestinal Caco-2 cells and the influence of fosfomycin. J. Antimicrob. Chemother. 42(3), 341–347 (1998)

    Article  Google Scholar 

  • Y. Jin, Y. Takegahara, Y. Sugawara, T. Matsumura, Y. Fujinaga, Disruption of the epithelial barrier by botulinum haemagglutinin (HA) proteins - differences in cell tropism and the mechanism of action between HA proteins of types A or B, and HA proteins of type C. Microbiology 155(Pt 1), 35–45 (2009)

    Article  Google Scholar 

  • J.A. Kiernan, Histological and histochemical methods: theory and practice (Butterworth Heinemann, Oxford, 1999). x, 502 p

    Google Scholar 

  • H.J. Kim, D.E. Ingber, Gut-on-a-Chip microenvironment induces human intestinal cells to undergo villus differentiation. Integr. Biol. 5(9), 1130–1140 (2013)

    Article  Google Scholar 

  • H.J. Kim, D. Huh, G. Hamilton, D.E. Ingber, Human gut-on-a-chip inhabited by microbial flora that experiences intestinal peristalsis-like motions and flow. Lab Chip 12(12), 2165–2174 (2012)

    Article  Google Scholar 

  • S.H. Kim, J.W. Lee, I. Choi, Y.C. Kim, J.B. Lee, J.H. Sung, A microfluidic device with 3-d hydrogel villi scaffold to simulate intestinal absorption. J. Nanosci. Nanotechnol. 13(11), 7220–7228 (2013)

    Article  Google Scholar 

  • S.H. Kim, M. Chi, B. Yi, S.H. Kim, S. Oh, Y. Kim, S. Park, J.H. Sung, Three-dimensional intestinal villi epithelium enhances protection of human intestinal cells from bacterial infection by inducing mucin expression. Integr. Biol. 6(12), 1122–1131 (2014)

    Article  Google Scholar 

  • R.G. Lentle, P.W.M. Janssen, Physical characteristics of digesta and their influence on flow and mixing in the mammalian intestine. J. Comp. Physiol. B. 178(6), 673–690 (2008)

    Article  Google Scholar 

  • F. Leonard, E.M. Collnot, C.M. Lehr, A three-dimensional coculture of enterocytes, monocytes and dendritic cells to model inflamed intestinal mucosa in vitro. Mol. Pharm. 7, 2103–2119 (2010)

    Article  Google Scholar 

  • N. Li, D. Wang, Z. Sui, X. Qi, L. Ji, X. Wang, L. Yang, Development of an improved three-dimensional in vitro intestinal mucosa model for drug absorption evaluation. Tissue Eng. Part C Methods 19(9), 708–719 (2013)

    Article  Google Scholar 

  • O. Lieleg, I. Vladescu, K. Ribbeck, Characterization of particle translocation through mucinhydrogels. Biophys. J. 98(9), 1782–1789 (2010)

    Article  Google Scholar 

  • K.M. McCarthy, I.B. Skare, M.C. Stankewich, M. Furuse, S. Tsukita, R.A. Rogers, R.D. Lynch, E.E. Schneeberger, Occludin is a functional component of the tight junction. J. Cell Sci. 109, 2287–2298 (1996)

    Google Scholar 

  • I. Meyvantsson, D.J. Beebe, Cell culture models in microfluidic systems. Annu. Rev. Anal. Chem. 1, 423–449 (2008)

    Article  Google Scholar 

  • K.W. Oh, L. Lee, B. Ahn, E.P. Furlani, Design of pressure-driven microfluidic networks using electric circuit analogy. Lab Chip 12(3), 515–545 (2012)

    Article  Google Scholar 

  • J. Olesen, L. Edvinsson, Basic mechanisms of headache, Amsterdam; NY, USA: Elsevier; Sole distributors for the USA and Canada, Elsevier Science Pub. Co. xxvi, 492 p (1988)

  • S.P. Olesen, P.F. Davies, D.E. Clapham, Muscarinic-activated K+ current in bovine endothelial cells. Circ. Res. 62(2), 1059–1064 (1988b)

    Article  Google Scholar 

  • E. Panteris, P. Apostolakos, B. Galatis, Microtubule organization, mesophyll cell morphogenesis, and intercellular space formation in Adiantum capillus veneris leaflets. Protoplasma 172(2–4), 97–110 (1993)

    Article  Google Scholar 

  • S. Park, H.J. Chun, J.S. Jang, B. Keum, Y.S. Seo, Y.S. Kim, Y.T. Jeen, H.S. Lee, S.H. Um, C.D. Kim, H.S. Ryu, C.S. Uhm, S.J. Lee, Is intercellular space different among layers in normal esophageal mucosa? An electron microscopic study. Dig. Dis. Sci. 56(12), 3492–3497 (2011)

    Article  Google Scholar 

  • B.M.H. Schneeberger, Die Musikerfamilie Fürstenau: Untersuchungen zu Leben und Werk (Lit, Münster, 1992)

    Google Scholar 

  • J.P. Schouten, Revolution of the mystics: on the social aspects of Vīraśaivism (Kok Pharos Pub. House, Kampen, 1991). xiii, 331 p

    Google Scholar 

  • J.M. Staddon, L.L. Rubin, Cell adhesion, cell junctions and the blood-brain barrier. Curr. Opin. Neurobiol. 6(5), 622–627 (1996)

    Article  Google Scholar 

  • T.M. Straub, J.R. Hutchison, R.A. Bartholomew, C.O. Valdez, N.B. Valentine, A. Dohnalkova, R.M. Ozanich, C.J. Bruckner-Lea, Defining cell culture conditions to improve human norovirus infectivity assays. Water Sci. Technol. 67(4), 863–868 (2013)

    Article  Google Scholar 

  • J.H. Sung, J. Yu, D. Luo, M.L. Shuler, J.C. March, Microscale 3-D hydrogel scaffold for biomimetic gastrointestinal (GI) tract model. Lab Chip 11(3), 389–392 (2011)

    Article  Google Scholar 

  • J.H. Sung, M.B. Esch, J.M. Prot, C.J. Long, A. Smith, J.J. Hickman, M.L. Shuler, Microfabricated mammalian organ systems and their integration into models of whole animals and humans. Lab Chip 13(7), 1201–1212 (2013)

    Article  Google Scholar 

  • F.J. Van Asten, H.G. Hendriks, J.F. Koninkx, B.A. Van der Zeijst, W. Gaastra, Inactivation of the flagellin gene of Salmonella enterica serotype Enteritidis strongly reduces invasion into differentiated Caco-2 cells. FEMS Microbiol. Lett. 185(2), 175–179 (2000)

    Article  Google Scholar 

  • R.B. van Breemen, Y. Li, Caco-2 cell permeability assays to measure drug absorption. Expert Opin. Drug Metab. Toxicol. 1, 175–185 (2005)

    Article  Google Scholar 

  • P. Zanassi, M. Paolillo, A. Feliciello, E.V. Avvedimento, V. Gallo, S. Schinelli, cAMP-dependent protein kinase induces cAMP-response element-binding protein phosphorylation via an intracellular calcium release/ERK-dependent pathway in striatal neurons. J. Biol. Chem. 276(15), 11487–11495 (2001)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Korea Science and Engineering Foundation (KOSEF) funded by the Korea government (MOST) (#2012-0001138), and by a grant from the Public Welfare & Safety Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (#2012R1A2A2A01012221 and #2012-0006522). JHS and BL acknowledges support from Hongik University Research Fund.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jong Hwan Sung or Sungsu Park.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chi, M., Yi, B., Oh, S. et al. A microfluidic cell culture device (μFCCD) to culture epithelial cells with physiological and morphological properties that mimic those of the human intestine. Biomed Microdevices 17, 58 (2015). https://doi.org/10.1007/s10544-015-9966-5

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10544-015-9966-5

Keywords

Navigation