3D silicone rubber interfaces for individually tailored implants

  • Jan Stieghorst
  • Alexandra Bondarenkova
  • Niklas Burblies
  • Peter Behrens
  • Theodor Doll


For the fabrication of customized silicone rubber based implants, e.g. cochlear implants or electrocortical grid arrays, it is required to develop high speed curing systems, which vulcanize the silicone rubber before it runs due to a heating related viscosity drop. Therefore, we present an infrared radiation based cross-linking approach for the 3D-printing of silicone rubber bulk and carbon nanotube based silicone rubber electrode materials. Composite materials were cured in less than 120 s and material interfaces were evaluated with scanning electron microscopy. Furthermore, curing related changes in the mechanical and cell-biological behaviour were investigated with tensile and WST-1 cell biocompatibility tests. The infrared absorption properties of the silicone rubber materials were analysed with fourier transform infrared spectroscopy in transmission and attenuated total reflection mode. The heat flux was calculated by using the FTIR data, emissivity data from the infrared source manufacturer and the geometrical view factor of the system.


Infrared curing 3D printing Customized neural implants Silicone rubber printing 



This project is supported by the Deutsche Forschungsgemeinschaft (DFG), Cluster of Excellence ‘Hearing4All’ and Lower Austria Life Science grants LS 010–017.


  1. L.A. Averett, P.R. Griffiths, K. Nishikida, Anal. Chem. 80, 3045 (2008)CrossRefGoogle Scholar
  2. H.D. Baehr, K. Stephan, Wärme- Und Stoffübertragung, 6th edn. (Springer-Verlag Berlin Heidelberg, Heidelberg, 2008), p. 616Google Scholar
  3. D.J. Browning, Retinal Vein Occlusions - Evidence-Based Management, 13th edn. (Springer-Verlag Berlin Heidelberg, Heidelberg, 2012), p. 5CrossRefGoogle Scholar
  4. G. Camino, S.M. Lomakin, M. Lazzari, Polymer 42, 2395 (2001)CrossRefGoogle Scholar
  5. K. Chen, A.M. Wo, Y. Chen, NSTI-Nanotech 2, 732 (2006)Google Scholar
  6. K.C. Cheung, Biomed. Microdevices 9, 923 (2007)CrossRefGoogle Scholar
  7. T. Devanathan, K.A. Young, Artif. Cells Blood Sub. Biotechnol. 9, 225 (1981)CrossRefGoogle Scholar
  8. E.D. Domenico, M. T. Stewart, M. W. Urban, Surface treatment of silicone rubber, U S Patent No 5364662, 1994Google Scholar
  9. D.T. Eddington, J.P. Puccinelli, D.J. Beebe, Sensors Actuators B Chem. 114, 170 (2006)CrossRefGoogle Scholar
  10. K. Efimenko, W.E. Wallace, J. Genzer, J. Colloid Interface Sci. 254, 306 (2002)CrossRefGoogle Scholar
  11. P.J. Flory, in Principles of Polymer Chemistry, ed. by Cornell University Press (Cornell University Press, Ithaca, 1953), p. 464Google Scholar
  12. E. Formaggio, S.F. Storti, V. Tramontano, A. Casarin, A. Bertoldo, A. Fiaschi, A. Talacchi, F. Sala, G.M. Toffolo, P. Manganotti, Front. Neuroeng 6, 1 (2013)CrossRefGoogle Scholar
  13. A.R. Gee, W.R. Delaney, P.M. Petrosino, Method of bonding a cured elastomer to plastic and metal surfaces, U S Patent No 5647939 A, 1997Google Scholar
  14. N. Grassie, I.G. Macfarlane, Eur. Polym. J. 14, 875 (1978)CrossRefGoogle Scholar
  15. R.A. Green, J.S. Ordonez, M. Schuettler, L.A. Poole-Warren, N.H. Lovell, G.J. Suaning, Biomaterials 31, 886 (2010)CrossRefGoogle Scholar
  16. W.K. Gstoettner, O. Adunka, P. Franz, J. Hamzavi Jr., H. Plenk Jr., M. Susani, W. Baumgartner, J. Kiefer, Acta Otolaryngol. 121, 216 (2001)CrossRefGoogle Scholar
  17. S. Halldorsson, E. Lucumi, R. Gomez-Sjoberg, R.M. Fleming, Biosens. Bioelectron. 63, 218 (2015)CrossRefGoogle Scholar
  18. M.S. Haque, C. Marinelli, F. Udrea, W.I. Milne, NSTI Nanotech, 135 (2006)Google Scholar
  19. A. Harman, B. Abrahams, S. Moore, R. Hoskins, Anat. Rec. 260, 124 (2000)CrossRefGoogle Scholar
  20. N.J. Harrick, A.I. Carlson, Appl. Opt. 10, 19 (1971)CrossRefGoogle Scholar
  21. N.J. Harrick, F.K. du Pre, Appl. Opt. 5, 1739 (1966)CrossRefGoogle Scholar
  22. M. Härth, D.W. Schubert, Macromol. Chem. Phys. 213, 654 (2012)CrossRefGoogle Scholar
  23. C. Hassler, T. Boretius, T. Stieglitz, J. Polym. Sci. B Polym. Phys. 49, 18 (2011)CrossRefGoogle Scholar
  24. H.J. Horner, J.E. Weiler, N.C. Angelotti, Anal. Chem. 32, 858 (1960)CrossRefGoogle Scholar
  25. T. Huang, J. Tsai, C. Cherng, J. Chen, AIP Conf. Proc. (1994). doi: 10.1063/1.46820 Google Scholar
  26. I.D. Johnston, D.K. McCluskey, C.K.L. Tan, M.C. Tracey, J. Micromech. Microeng. 24, 1 (2014)Google Scholar
  27. R.M. Jones, Deformation Theory of Plasticity (Bull Ridge Corporation, Blacksburg, 2009), p. 80Google Scholar
  28. A.D. Lantada, P.L. Morgado, Annu. Rev. Biomed. Eng. 14, 73 (2012)CrossRefGoogle Scholar
  29. J.N. Lee, X. Jiang, D. Ryan, G.M. Whitesides, Langmuir 20, 11684 (2004)CrossRefGoogle Scholar
  30. J.N. Lee, C. Park, G.M. Whitesides, Anal. Chem. 75, 6544 (2003)CrossRefGoogle Scholar
  31. E.M. Maynard, C.T. Nordhausen, R.A. Normann, Electroencephalogr. Clin. Neurophysiol. 102, 228 (1997)CrossRefGoogle Scholar
  32. S.A. Merschman, S.H. Lubbad, D.C. Tilotta, J. Chromatogr. A 829, 377 (1998)CrossRefGoogle Scholar
  33. R. Mezzenga, J. Ruokolainen, A. Hexemer, Langmuir 19, 8144 (2003)CrossRefGoogle Scholar
  34. L.J. Millet, M.E. Stewart, J.V. Sweedler, R.G. Nuzzo, M.U. Gillette, Lab Chip 7, 987 (2007)CrossRefGoogle Scholar
  35. G.M. Odegard, S.V. Frankland, T.S. Gates, AIAA J. 43, 1828 (2005)CrossRefGoogle Scholar
  36. K. Ohta, R. Iwamoto, Appl. Spectrosc. 39, 418 (1985)CrossRefGoogle Scholar
  37. E.P.J. Parrott, J.A. Zeitler, J. McGregor, S. Oei, W.I. Milne, J. Tessonnier, D.S. Su, R. Schlogl, L.F. Gladden, 2009 34th International Conference on Infrared, Millimeter, and Terahertz Waves; Untangling the electronic properties in highly similar multi-walled carbon nanotubes by terahertz spectroscopy. 1 (2009). doi: 10.1109/ICIMW.2009.5324621
  38. M. Planck, Ann. Phys. 309, 553 (1901)CrossRefGoogle Scholar
  39. K.J. Regehr, M. Domenech, J.T. Koepsel, K.C. Carver, S.J. Ellison-Zelski, W.L. Murphy, L.A. Schuler, E.T. Alarid, D.J. Beebe, Lab. Chip 9, 2132 (2009)CrossRefGoogle Scholar
  40. F. Röthemeyer, F. Sommer, in Kautschuktechnologie: Werkstoffe - Verarbeitung - ProdukteAnonymous (Carl Hanser Verlag, München, 2013), p. 514CrossRefGoogle Scholar
  41. F. Schneider, T. Fellner, J. Wilde, U. Wallrabe, J. Micromech. Microeng. 18, 1 (2008)Google Scholar
  42. F. Schneider, J. Draheim, R. Kamberger, U. Wallrabe, Sensors Actuators A Phys. 151, 95 (2009)CrossRefGoogle Scholar
  43. J. Stieghorst, K. Tegtmeier, P. Aliuos, H. Zernetsch, B. Glasmacher, T. Doll, Phys. Status Solidi A 211, 1455 (2014)CrossRefGoogle Scholar
  44. N. Suzuki, S. Kiba, Y. Kamachi, N. Miyamoto, Y. Yamauchi, Phys. Chem. Chem. Phys. 14, 3400 (2012)CrossRefGoogle Scholar
  45. K. Tegtmeier, P. Aliuos, J. Stieghorst, M. Schickedanz, F. Golly, H. Zernetsch, B. Glasmacher, T. Doll, Phys. Status Solidi A 211, 1439 (2014)CrossRefGoogle Scholar
  46. D. Vortmeyer, S. Kabelac, in VDI-Wärmeatlas, ed. by VDI e.V. (Springer-Verlag Berlin Heidelberg, Heidelberg, 2013), p. 1090Google Scholar
  47. W. Wang, A.D. Degenhart, J.L. Collinger, R. Vinjamuri, G.P. Sudre, P.D. Adelson, D.L. Holder, E.C. Leuthardt, D.W. Moran, M.L. Boninger, A.B... Schwartz, D.J. Crammond, E.C. Tyler-Kabara, D.J. Weber, Conf. Proc. IEEE Eng. Med. Biol. Soc. 2009, 586 (2009)Google Scholar
  48. J. Winder, R. Bibb, J. Oral Maxillofac. Surg. 63, 1006 (2005)CrossRefGoogle Scholar
  49. J. Yang, X. Wang, X. Wang, R. Jia, J. Huang, J. Phys. Chem. Solids 71, 448 (2010)CrossRefGoogle Scholar
  50. T. Yeung, P.C. Georges, L.A. Flanagan, B. Marg, M. Ortiz, M. Funaki, N. Zahir, W. Ming, V. Weaver, P.A. Janmey, Cell Motil. Cytoskeleton 60, 24 (2005)CrossRefGoogle Scholar
  51. J. Yoo, A. Sharma, P. Tathireddy, L.W. Rieth, F. Solzbacher, J. Song, Sensors Actuators B Chem. 166–167, 777 (2012)CrossRefGoogle Scholar
  52. Y.S. Yu, Y.P. Zhao, J. Colloid Interface Sci. 332, 467 (2009)CrossRefGoogle Scholar
  53. C. Yuan, J. Wang, G. Chen, J. Zhang, J. Yang, Soft. Matter 7, 4039 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Jan Stieghorst
    • 1
    • 2
  • Alexandra Bondarenkova
    • 1
    • 2
  • Niklas Burblies
    • 1
    • 3
  • Peter Behrens
    • 1
    • 3
  • Theodor Doll
    • 1
    • 2
  1. 1.Cluster of Excellence Hearing4allHannoverGermany
  2. 2.BioMaterial Engineering, Department of OtorhinolaryngologyHannover Medical SchoolHannoverGermany
  3. 3.Institut für Anorganische ChemieLeibniz Universität HannoverHannoverGermany

Personalised recommendations