Skip to main content
Log in

Detection of an amphiphilic biosample in a paper microchannel based on length

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

We developed a simple method to achieve semiquantitative detection of an amphiphilic biosample through measuring the length of flow on a microfluidic analytical device (μPAD) based on paper. When an amphiphilic sample was dripped into a straight microchannel defined with a printed wax barrier (hydrophobic) on filter paper (hydrophilic), the length of flow was affected by the reciprocal effect between the sample, the filter-paper channel and the wax barrier. The flow length decreased with increasing concentration of an amphiphilic sample because of adsorption of the sample on the hydrophobic barrier. Measurement of the flow length enabled a determination of the concentration of the amphiphilic sample. The several tested samples included surfactants (Tween 20 and Triton X-100), oligonucleotides (DNA), bovine serum albumin (BSA), human albumin, nitrite, glucose and low-density lipoprotein (LDL). The results show that the measurement of the flow length determined directly the concentration of an amphiphilic sample, whereas a non-amphiphilic sample was not amenable to this method. The proposed method features the advantages of small cost, simplicity, convenience, directness, rapidity (<5 min) and requirement of only a small volume (5 μL) of sample, with prospective applications in developing areas and sites near patients for testing at a point of care (POCT).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • K. Abe, K. Suzuki, D. Citterio, Anal. Chem. 80, 6928 (2008)

    Article  Google Scholar 

  • K. Abe, K. Kotera, K. Suzuki, D. Citterio, Anal. Bioanal. Chem. 398, 885 (2010)

    Article  Google Scholar 

  • D.A. Bruzewicz, M. Reches, G.M. Whitesides, Anal. Chem. 80, 3387 (2008)

    Article  Google Scholar 

  • E. Carrilho, A.W. Martinez, G.M. Whitesides, Anal. Chem. 81, 7091 (2009)

    Article  Google Scholar 

  • D.M. Cate, W. Dungchai, J.C. Cunningham, J. Volckens, C.S. Henry, Lab Chip 13, 2397 (2013)

    Article  Google Scholar 

  • Y.T. Chen, Y.C. Liu, W.F. Fang, C.J. Huang, S.K. Fan, W.J. Chen, W.T. Chang, C.H. Huang, J.T. Yang, Biosens. Bioelectron. 50, 8 (2013)

    Article  Google Scholar 

  • S.S. Chen, C.W. Hu, I.F. Yu, Y.C. Liao, J.T. Yang, Lab Chip 14, 2124 (2014)

    Article  Google Scholar 

  • G. Chitnis, Z. Ding, C.L. Chang, C.A. Savran, B. Ziaie, Lab Chip 11, 1161 (2011)

    Article  Google Scholar 

  • W. Dungchai, O. Chailapakul, C.S. Henry, Anal. Chem. 81, 5821 (2009)

    Article  Google Scholar 

  • W. Dungchai, O. Chailapakul, C.S. Henry, Anal. Chim. Acta 674, 227 (2010)

    Article  Google Scholar 

  • N. Ealth, Third report of the expert panel on detection, evaluation and treatment of high blood cholesterol in adults (ATP III final report). national heart, lung and blood institute (NHLBI) (National Institutes of Health, Maryland, 2002)

    Google Scholar 

  • E. Evans, E.F.M. Gabriel, W.K.T. Coltro, C.D. Garcia, Analyst 139, 2127 (2014)

    Article  Google Scholar 

  • W.F. Fang, S.C. Ting, C.W. Hsu, Y.T. Chen, J.T. Yang, Lab Chip 12, 923 (2012)

    Article  Google Scholar 

  • E. Fu, B. Lutz, P. Kauffman, P. Yager, Lab Chip 10, 918 (2010)

    Article  Google Scholar 

  • S.A. Klasner, A.K. Price, K.W. Hoeman, R.S. Wilson, K.J. Bell, C.T. Culbertson, Anal. Bioanal. Chem. 397, 1821 (2010)

    Article  Google Scholar 

  • X. Li, J. Tian, T. Nguyen, W. Shen, Anal. Chem. 80, 9131 (2008)

    Article  Google Scholar 

  • X. Li, J. Tian, G. Garnier, W. Shen, Colloids Surf. B: Biointerfaces 76, 564 (2010)

    Article  Google Scholar 

  • X. Li, D.R. Ballerini, W. Shen, Biomicrofluidics 6, 011301 (2012)

    Article  Google Scholar 

  • A.W. Martinez, S.T. Phillips, M.J. Butte, G.M. Whitesides, Angew. Chem. Int. Ed. 46, 1318 (2007)

    Article  Google Scholar 

  • A.W. Martinez, S.T. Phillips, G.M. Whitesides, Proc. Natl. Acad. Sci. U. S. A. 105, 19606 (2008)

    Article  Google Scholar 

  • A.W. Martinez, S.T. Phillips, Z. Nie, C.M. Cheng, E. Carrilho, B.J. Wiley, G.M. Whitesides, Lab Chip 10, 2499 (2010)

    Article  Google Scholar 

  • Z. Nie, F. Deiss, X. Liu, O. Akbulut, G.M. Whitesides, Lab Chip 10, 3163 (2010)

    Article  Google Scholar 

  • A. Nilghaz, D.R. Ballerini, X.Y. Fang, W. Shen, Sens. Actuators B Chem. 191, 586 (2014)

    Article  Google Scholar 

  • W. Wang, W.Y. Wu, J.J. Zhu, J. Chromatogr. A 1217, 3896 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

National Science Council of the Republic of China partially supported this work under contracts NSC 102-2221-E-002-080 and NSC 102-2120-M-002-002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing-Tang Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, YT., Yang, JT. Detection of an amphiphilic biosample in a paper microchannel based on length. Biomed Microdevices 17, 52 (2015). https://doi.org/10.1007/s10544-015-9954-9

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10544-015-9954-9

Keywords

Navigation