Biomedical Microdevices

, 18:1 | Cite as

Miniaturized implantable sensors for in vivo localized temperature measurements in mice during cold exposure

  • R. Padovani
  • T. Lehnert
  • P. Cettour-Rose
  • R. Doenlen
  • J. Auwerx
  • M. A. M. Gijs


We report on in vivo temperature measurements performed in mice at two specific sites of interest in the animal body over a period of several hours. In particular, the aim of this work was to monitor mouse metabolism during cold exposure, and to record possible temperature differences between the body temperature measured in the abdomen and the temperature of the brown adipose tissue (BAT) situated in the interscapular area. This approach is of biological interest as it may help unravelling the question whether biochemical activation of BAT is associated with local increase in metabolic heat production. For that purpose, miniaturized thermistor sensors have been accurately calibrated and implanted in the BAT and in the abdominal tissue of mice. After 1 week of recovery from surgery, mice were exposed to cold (6 °C) for a maximum duration of 6 h and the temperature was acquired continuously from the two sensors. Control measurements with a conventional rectal probe confirmed good performance of both sensors. Moreover, two different mouse phenotypes could be identified, distinguishable in terms of their metabolic resistance to cold exposure. This difference was analyzed from the thermal point of view by computational simulations. Our simple physical model of the mouse body allowed to reproduce the global evolution of hypothermia and also to explain qualitatively the temperature difference between abdomen and BAT locations. While with our approach, we have demonstrated the importance and feasibility of localized temperature measurements on mice, further optimization of this technique may help better identify local metabolism variations.


Miniaturized temperature sensor Implantable temperature sensor Thermistor calibration In vivo localized sensing Brown adipose tissue Cold exposure analysis 



This work was supported by the EPFL and funding was provided by the EU Ideas program (ERC-2012-AdG-320404). JA is the Nestlé Chair in Energy Metabolism and research in his laboratory was supported by institutional funds of the EPFL. We thank Norman Moullan for technical insight in cellular metabolism. We greatly thank Arnaud Bichat from EPFL Center of PhenoGenomics (CPG) for expert technical assistance in the surgical and behavioral experiments. We thank also the EPFL printed circuit board workshop (ACI) for assistance in sensors preparation.


  1. M. D. Alexander, K. T. B. MacQuarrie, Ground Water Monit. Remediat. 25, 75 (2005)CrossRefGoogle Scholar
  2. D. D. Bae, P. L. Brown, E. A. Kiyatkin, Brain Res. 1154, 61 (2007)CrossRefGoogle Scholar
  3. K. C. Bicego, R. C. H. Barros, L. G. S. Branco, Comp. Biochem. Physiol. A. Mol. Integr. Physiol. 147, 616 (2007)CrossRefGoogle Scholar
  4. C. M. L. Burnett, J. L. Grobe, Am. J. Physiol. Endocrinol. Metab. 305, E916 (2013)CrossRefGoogle Scholar
  5. C. M. L. Burnett, J. L. Grobe, Mol. Metab. 3, 460 (2014)CrossRefGoogle Scholar
  6. C. Cohade, M. Osman, H. K. Pannu, R. L. Wahl, J. Nucl. Med. 44, 170 (2003)Google Scholar
  7. B. Conti, M. Sanchez-Alavez, R. Winsky-Sommerer, M. C. Morale, J. Lucero, S. Brownell, V. Fabre, S. Huitron-Resendiz, S. Henriksen, E. P. Zorrilla, L. de Lecea, T. Bartfai, Science 314, 825 (2006)CrossRefGoogle Scholar
  8. J. D. Crane, E. P. Mottillo, T. H. Farncombe, K. M. Morrison, G. R. Steinberg, Mol. Metab. 3, 490 (2014)CrossRefGoogle Scholar
  9. R. G. da Silva, A. S. Campos Maia, Principles of Animal Biometeorology (Springer, 2013)Google Scholar
  10. S. DeBow, F. Colbourne, Methods 30, 167 (2003)CrossRefGoogle Scholar
  11. F. A. Duck, Physical Properties of Tissues a Comprehensive Reference Book (Academic Press, London, 1990)Google Scholar
  12. M. L. Gantner, B. C. Hazen, J. Conkright, A. Kralli, Proc. Natl. Acad. Sci. U. S. A. 111, 11870 (2014)CrossRefGoogle Scholar
  13. S. Gatti, J. Beck, G. Fantuzzi, T. Bartfai, C. A. Dinarello, Am. J. Physiol. Regul. Integr. Comp. Physiol. 282, R702 (2002)CrossRefGoogle Scholar
  14. C. J. Gordon, J. Therm. Biol. 34, 213 (2009)CrossRefGoogle Scholar
  15. C. J. Gordon, J. Therm. Biol. 37, 654 (2012)CrossRefGoogle Scholar
  16. M. J. Harms, J. Ishibashi, W. Wang, H.-W. Lim, S. Goyama, T. Sato, M. Kurokawa, K.-J. Won, P. Seale, Cell Metab. 19, 593 (2014)CrossRefGoogle Scholar
  17. IUPS Thermal Commission, J. Therm. Biol. 28(75) (2003)Google Scholar
  18. N. Kataoka, H. Hioki, T. Kaneko, K. Nakamura, Cell Metab. 20, 346 (2014)CrossRefGoogle Scholar
  19. E. M. Knight, T. M. Brown, S. Gümüsgöz, J. C. M. Smith, E. J. Waters, S. M. Allan, C. B. Lawrence, Dis. Model. Mech. 6, 160 (2013)CrossRefGoogle Scholar
  20. D.M. Lateef, G. Abreu-Vieira, C. Xiao, M.L. Reitman, Am. J. Physiol. Endocrinol. Metab. E681 (2014)Google Scholar
  21. J. A. Levine, Public Health Nutr. 8, 1123 (2005)CrossRefGoogle Scholar
  22. P. Lomax, Nature 210, 854 (1966)CrossRefGoogle Scholar
  23. L. E. Mount, J. Physiol. 217, 315 (1971)CrossRefGoogle Scholar
  24. J. Nedergaard, B. Cannon, Cell Metab. 11, 268 (2010)CrossRefGoogle Scholar
  25. J. Nedergaard, T. Bengtsson, B. Cannon, Am. J. Physiol. Endocrinol. Metab. 293, E444 (2007)CrossRefGoogle Scholar
  26. S. Poole, J. D. Stephenson, Physiol. Behav. 18, 203 (1977)CrossRefGoogle Scholar
  27. M. Saito, Obes. Res. Clin. Pract. 7, e432 (2013)CrossRefGoogle Scholar
  28. M. Saito, Y. Okamatsu-Ogura, M. Matsushita, K. Watanabe, T. Yoneshiro, J. Nio-Kobayashi, T. Iwanaga, M. Miyagawa, T. Kameya, K. Nakada, Y. Kawai, M. Tsujisaki, Diabetes 58, 1526 (2009)CrossRefGoogle Scholar
  29. M. Sanchez-Alavez, S. Alboni, B. Conti, Age Dordr. Neth. 33, 89 (2011)CrossRefGoogle Scholar
  30. J. R. Speakman, Integr. Physiol. 4, 34 (2013)Google Scholar
  31. J. S. Steinhart, S. R. Hart, Deep Sea Res. Oceanogr. Abstr. 15, 497 (1968)Google Scholar
  32. M. H. Tschöp, J. R. Speakman, J. R. S. Arch, J. Auwerx, J. C. Brüning, L. Chan, R. H. Eckel, R. V. Farese Jr., J. E. Galgani, C. Hambly, M. A. Herman, T. L. Horvath, B. B. Kahn, S. C. Kozma, E. Maratos-Flier, T. D. Müller, H. Münzberg, P. T. Pfluger, L. Plum, M. L. Reitman, K. Rahmouni, G. I. Shulman, G. Thomas, C. R. Kahn, E. Ravussin, Nat. Methods 9, 57 (2012)CrossRefGoogle Scholar
  33. M. J. Vosselman, W. D. van Marken Lichtenbelt, P. Schrauwen, Mol. Cell. Endocrinol. 379, 43 (2013)CrossRefGoogle Scholar
  34. J. E. Walker, Angew. Chem. Int. Ed. 37, 2308 (1998)CrossRefGoogle Scholar
  35. J. B. d. V. Weir, J. Physiol. 109, 1 (1949)CrossRefGoogle Scholar
  36. T. J. J. Zethof, J. A. M. Van Der Heyden, J. T. B. M. Tolboom, B. Olivier, Physiol. Behav. 55, 109 (1994)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • R. Padovani
    • 1
  • T. Lehnert
    • 1
  • P. Cettour-Rose
    • 2
  • R. Doenlen
    • 2
  • J. Auwerx
    • 3
  • M. A. M. Gijs
    • 1
  1. 1.Laboratory of MicrosystemsEcole Polytechnique Fédérale de LausanneLausanneSwitzerland
  2. 2.Center of PhenoGenomicsEcole Polytechnique Fédérale de LausanneLausanneSwitzerland
  3. 3.Laboratory of Integrative Systems PhysiologyEcole Polytechnique Fédérale de LausanneLausanneSwitzerland

Personalised recommendations