Advertisement

Biomedical Microdevices

, 17:117 | Cite as

Microfluidic emulation of mechanical circulatory support device shear-mediated platelet activation

  • Annalisa Dimasi
  • Marco Rasponi
  • Jawaad Sheriff
  • Wei-Che Chiu
  • Danny Bluestein
  • Phat L. Tran
  • Marvin J. Slepian
  • Alberto Redaelli
Article

Abstract

Thrombosis of ventricular assist devices (VADs) compromises their performance, with associated risks of systemic embolization, stroke, pump stop and possible death. Anti-thrombotic (AT) drugs, utilized to limit thrombosis, are largely dosed empirically, with limited testing of their efficacy. Further, such testing, if performed, typically examines efficacy under static conditions, which is not reflective of actual shear-mediated flow. Here we adopted our previously developed Device Thrombogenicity Emulation methodology to design microfluidic platforms able to emulate representative shear stress profiles of mechanical circulatory support (MCS) devices. Our long-term goal is to utilize these systems for point-of-care (POC) personalized testing of AT efficacy under specific, individual shear profiles. First, we designed different types of microfluidic channels able to replicate sample shear stress patterns observed in MCS devices. Second, we explored the flexibility of microfluidic technology in generating dynamic shear stress profiles by modulating the geometrical features of the channels. Finally, we designed microfluidic channel systems able to emulate the shear stress profiles of two commercial VADs. From CFD analyses, the VAD-emulating microfluidic systems were able to replicate the main characteristics of the shear stress waveforms of the macroscale VADs (i.e., shear stress peaks and duration). Our results establish the basis for development of a lab-on-chip POC system able to perform device-specific and patient-specific platelet activation state assays.

Keywords

Mechanical circulatory support Ventricular assist devices Thrombosis Microfluidics Computational fluid dynamics Anti-thrombotic therapy 

Notes

Acknowledgments

This publication was made possible by research grant number 2241–2011, from Fondazione Cariplo (AR) and NIH/NIBIB Quantum Award Implementation Phase II-U01 EB012487-0 (DB, MJS). This article does not contain any studies with human participants or animals performed by any of the authors.

Compliance with ethical standards

Conflict of interest

A. Dimasi, M. Rasponi, J. Sheriff, W. C. Chiu, M. J. Slepian, and D. Bluestein declare that they have no conflict of interest.

References

  1. Y. Alemu, D. Bluestein, Artif. Organs 31(9), 677–88 (2007)CrossRefGoogle Scholar
  2. Y. Alemu, G. Girdhar, M. Xenos, J. Sheriff, J. Jesty, S. Einav, D. Bluestein, ASAIO J. 56, 389–396 (2010)CrossRefGoogle Scholar
  3. J. Apel, R. Paul, S. Klaus, T. Siess, H. Reul, Artif. Organs 25(5), 341–347 (2001)CrossRefGoogle Scholar
  4. H. Chen, S. Chen, W. Matthaeus, Phys. Rev. A 45, 5339 (1992)CrossRefGoogle Scholar
  5. W.C. Chiu, G. Girdhar, M. Xenos, Y. Alemu, J.S. Soares, S. Einav, M. Slepian, D. Bluestein, J. Biomech. Eng. 136, 021014 (2014)CrossRefGoogle Scholar
  6. P.M. Eckman, J. Ranjit, Circulation 125, 3038–3047 (2012)CrossRefGoogle Scholar
  7. J. Friend, L. Yeo, Biomicrofluidics 4, 026502 (2010)CrossRefGoogle Scholar
  8. G. Girdhar, D. Bluestein, Biological effects of dynamic shear stress in cardiovascular pathologies and devices. Expert Rev. Med. Devices 5(2), 167–181 (2008)CrossRefGoogle Scholar
  9. G. Girdhar, M. Xenos, Y. Alemu, W.C. Chiu, B. Lynch, J. Jesty, S. Einav, M.J. Slepian, D. Bluestein, PLoS One 7, e32463 (2012)CrossRefGoogle Scholar
  10. E. Gutierrez, B.G. Petrich, S.J. Shattil, M.H. Ginsberg, A. Groisman, A. Kasirer-Friede, Lab Chip 8(9), 1486–1495 (2008)CrossRefGoogle Scholar
  11. J. Jesty, D. Bluestein, Anal. Biochem. 272, 64–70 (1999)CrossRefGoogle Scholar
  12. J. Jesty, W. Yin, P. Perrotta, D. Bluestein, Platelets 14, 143–149 (2003)CrossRefGoogle Scholar
  13. R. Li, S.I. Diamond, Thromb. Res. 133, 203–210 (2014)CrossRefGoogle Scholar
  14. M. Li, D.N. Kub, C.R. Forest, Lab Chip 12, 1335–1343 (2012)Google Scholar
  15. M. Li, N.A. Hotaling, D.N. Kub, C.R. Forest, PLoS One 9(1), e82493 (2014)CrossRefGoogle Scholar
  16. G. Liu, Y. Tian, Y. Kan, Microsyst. Technol. 11, 343–346 (2005)CrossRefGoogle Scholar
  17. H. Mani, N. Herth, A. Kasper, T. Wendt, G. Schuettfort, Y. Weil, W. Pfeilschifter, B. Linnemann, E. Herrmann, E. Lindhoff-Last, Ther. Drug Monit. 36(5), 624–631 (2014)CrossRefGoogle Scholar
  18. M.R. Mehra, G.C. Stewart, P.A. Uber, J. Heart Lung Transpl. 33, 1–11 (2014)CrossRefGoogle Scholar
  19. S.A. Morsi, A.J. Alexander, J. Fluid Mech. 55(2), 193–208 (1972)MATHCrossRefGoogle Scholar
  20. M. Nobili, J. Sheriff, U. Morbiducci, A. Redaelli, D. Bluestein, ASAIO J. 54(1), 64–72 (2008)CrossRefGoogle Scholar
  21. A. Pelosi, J. Sheriff, M. Stevanella, G.B. Fiore, D. Bluestein, A. Redaelli, Biomech. Model. Mechanobiol. 13, 349–361 (2014)CrossRefGoogle Scholar
  22. R.C. Starling, N. Moazami, S.C. Silvestry, G. Ewald, J.G. Rogers, C. Milano et al., N. Engl. J. Med. 370, 33–40 (2014)CrossRefGoogle Scholar
  23. G.C. Stewart, M.M. Givetz, Circulation 125, 1304–1315 (2012)CrossRefGoogle Scholar
  24. A.D. Stroock, S.K.W. Dertinger, A. Ajdari, I. Mezić, H.A. Stone, G.M. Whitesides, Science 295, 647–651 (2002)CrossRefGoogle Scholar
  25. H.M. van Zijp, A.D. Barendrecht, J. Riegman, J.M.H. Goudsmits, A.M. de Jong, H. Kress, M.W.J. Prins, Biomed. Microdevices 16, 217–227 (2014)CrossRefGoogle Scholar
  26. S.A. Von Ruden, M.A. Murray, J.L. Grice, A.K. Proebstle, K.J. Kopacek, J. Pharm. Pract. 25(2), 232–249 (2012)CrossRefGoogle Scholar
  27. G.M. Whitesides, Nature 442, 368–373 (2006)CrossRefGoogle Scholar
  28. J. Wu, B.M. Yun, A.M. Fallon, S.R. Hanson, C.K. Aidun, A.P. Yoganathan, Ann. Biomed. Eng. 39(2), 897–910 (2011)Google Scholar
  29. M. Xenos, G. Girdhar, Y. Alemu, J. Jesty, M. Slepian, S. Einav, D. Bluestein, J. Biomech. 43, 2400–2409 (2010)CrossRefGoogle Scholar
  30. Y. Xia, G.M. Whitesides, Angew. Chem. Int. Ed. 37, 550–575 (1998)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Annalisa Dimasi
    • 1
  • Marco Rasponi
    • 1
  • Jawaad Sheriff
    • 2
  • Wei-Che Chiu
    • 2
  • Danny Bluestein
    • 2
  • Phat L. Tran
    • 3
  • Marvin J. Slepian
    • 2
    • 3
  • Alberto Redaelli
    • 1
  1. 1.Department of Electronics, Information and BioengineeringPolitecnico di MilanoMilanItaly
  2. 2.Department of Biomedical EngineeringStony Brook UniversityStony BrookUSA
  3. 3.Department of Medicine and Biomedical Engineering, Sarver Heart CenterUniversity of ArizonaTucsonUSA

Personalised recommendations