Advertisement

Biomedical Microdevices

, 17:5 | Cite as

A giant magnetoimpedance-based biosensor for sensitive detection of Escherichia coli O157:H7

  • Zhen Yang
  • Xue-cheng Sun
  • Tao Wang
  • Chong Lei
  • Yan Liu
  • Yong Zhou
  • Jian Lei
Article

Abstract

A giant magnetoimpedance (GMI)-based biosensor was developed for detection of Escherichia coli (E. coli) O157: H7. The GMI sensor involving the sensing elements of Cr/Cu/NiFe/Cu/NiFe was fabricated by Micro Electro-Mechanical system (MEMS) technology, including thick photoresist lithography and electroplating. A separate Au film substrate as immunoplatform was used to capture E. coli O157:H7. The monoclonal mouse anti-E. coli antibody was immobilized on Au film substrate surface with a self-assembled layer. The different concentration E. coli O157:H7 (100, 300 and 500 cfu/ml) were combined with Dynabeads-antibody conjugates (DAC) respectively. DAC were prepared by conjugating streptavidin-coupled Dynabeads with biotin-labeled polyclonal mouse anti-E. coli antibodies. The classical sandwich assay was used for detection of E. coli O157:H7 targeted with Dynabeads by using antibody-antigen pair combination of biotin-streptavidin. The fundamental principle for detection of E. coli O157:H7 based on GMI sensor was that Dynabeads were employed as magnetic labels of E. coli O157:H7, and E. coli O157:H7 can be monitored by detecting the fringe field of Dynabeads using magnetic sensing elements. We observed that the GMI ratio were significantly improved due to the presence of E. coli O157:H7 combined with Dynabeads. The GMI ratio increased as the E. coli O157:H7 concentration increased. A lower detectable concentration of 100 cfu/ml was achieved in present work. The GMI-based biosensor provides a new method to rapid and sensitive detection E. coli O157:H7, which has a large potential for bio-application.

Keywords

E. coli O157:H7 Giant magnetoimpedance Biosensor Dynabeads Au film 

Notes

Acknowledgments

This work was supported by The National Natural Science Foundation of China (No. 61074168 and No. 61273065), National Science and Technology Support Program (2012BAK08B05) and National Key Laboratory Research Fund (9140C790403110C7905). Natural Science Foundation of Shanghai (13ZR1420800) and the Analytical and Testing Center in Shanghai Jiao Tong University.

References

  1. F. Alves, L. Abi Rached, J. Moutoussamy, C. Coillot, Sens. Actuators A 142, 459 (2008)CrossRefGoogle Scholar
  2. F.E. Atalay, H. Kaya, S. Atalay, J. Phys. D, Appl. Phys. 39, 431 (2006)CrossRefGoogle Scholar
  3. C. Berggren, B. Bjarnason, G. Johansson, Biosens. Bioelectron. 13, 1061–1068 (1998)CrossRefGoogle Scholar
  4. R.L. Bunchnan, M.P. Dolye, Food Technol. 51, 69–76 (1997)Google Scholar
  5. Centers for Disease Control and Prevention (CDC), 2005. Disease Information-E. coli O157:H7. Available at: www.cdc.gov. Accessed December.Google Scholar
  6. L. Chen, Y. Zhou, Z.M. Zhou, W. Ding, J. Phys. D. Appl. Phys. 42, 145005 (2009)CrossRefGoogle Scholar
  7. L. Chen, C.C. Bao, H. Yang, C. Lei, Y. Zhou, D.X. Cui, Biosens. Bioelectron. 26, 3246–3253 (2011)CrossRefGoogle Scholar
  8. D.R. Demarco, E.W. Saaski, D.A. McCare, D.V. Lim, J. Food Prot. 62, 711–716 (1999)Google Scholar
  9. J. Devkota, A. Ruiz, P. Mukherjee, H. Srikanth, M.H. Phan, IEEE Trans. Magn. 49, 4060 (2013)CrossRefGoogle Scholar
  10. K.S. Gracias, J.L. McKillip, J. Can, Microbiol. 50, 883–890 (2004)Google Scholar
  11. J.L. Guesdon, S. Avrameas, Magnetic solid phase enzymeimmunoassay. Immunochemistry 14, 443–447 (1977)CrossRefGoogle Scholar
  12. B.-I. Haukanes, C. Kvam, Application of magnetic beads in bioassays. Biohechnol. 12, 60–63 (1993)Google Scholar
  13. S.S. Iqbal, W.M. Mayo, J.G. Bruno, B.V. Bronk, C.A. Batt, J.P. Chambers, Biosens. Bioelectron. 15, 549–578 (2000)CrossRefGoogle Scholar
  14. P. Irwin, W. Damert, J. Berwater, A. Gehring, S.-I. Tu, J. Rapid Meth, Autom. Microbiol. 10, 129–147 (2002)Google Scholar
  15. D. Ivniski, I. Abdel-Hamid, P. Atanasov, E. Wilkins, Biosens. Bioelectron. 14, 599–624 (1999)CrossRefGoogle Scholar
  16. G.V. Kurlyandskaya, M.L. Sanchez, B. Hernando, V.M. Prida, P. Gorria, M. Tejedor, Appl. Phys. Lett. 82, 3053–3055 (2003)CrossRefGoogle Scholar
  17. D.P. Makhnovskiy, L.V. Panina, Sens. Actuators A 81, 91 (2000)CrossRefGoogle Scholar
  18. V. E. Makhotkina, B. P. Shurukhina, V. A. Lopatina, P. Yu. Marchukova, Yu. K. Levina, Sens. actuators A 25–27, 759 (1991).Google Scholar
  19. C.S. Mayo, R.B.J. Hallock, Immunol. Methods. 120, 105–114 (1989)CrossRefGoogle Scholar
  20. S. Oh, M. Jadhav, J. Lim, V. Reddy, C. Kim, Biosens. Bioelectron. 41, 758–763 (2013)CrossRefGoogle Scholar
  21. L.V. Panina, K. Mohri, Appl. Phys. Lett. 65, 1189 (1994)CrossRefGoogle Scholar
  22. M.H. Phan, H.X. Peng, M.R. Wisnom, S.C. Yu, N.H. Nghi, C.G. Kim, Sens. Actuators A 129, 62 (2006)CrossRefGoogle Scholar
  23. C.A. Phillips, J. Sci. Food Agric. 79, 1367–1381 (1999)CrossRefGoogle Scholar
  24. C. Ruan, L. Yang, Y. Li, Anal. Chem. 74, 4814–4820 (2002)CrossRefGoogle Scholar
  25. T.M. Silk, C.W.J. Donnelly, Food Protection 60, 1483–1486 (1997)Google Scholar
  26. P.D. Skottrup, M. Nicolaisen, A.F. Justesen, Biosens. Bioelectron. 24, 339–348 (2008)CrossRefGoogle Scholar
  27. R.L. Sommer, C.L. Chine, Appl. Phys. Lett. 47, 3346 (1995)CrossRefGoogle Scholar
  28. T.C. Tang, A.P. Deng, H.J. Huang, Anal. Chem. 74, 2617–2621 (2002)CrossRefGoogle Scholar
  29. S.-I. Tu, M. Golden, P. Andreotti, L.S.L. Yu, P. Irwin, J. Rapid Meth, Autom. Microbiol. 9, 71–84 (2001)Google Scholar
  30. S.-I. Tu, J. Uknalis, M. Gore, P. Irwin, I. Feder, J. Rapid Meth, Autom. Microbiol. 11, 35–46 (2003)Google Scholar
  31. S.-I. Tu, S. Reed, A. Gehring, Y. He, G. Paoli, Sensors 9, 717–730 (2009)CrossRefGoogle Scholar
  32. M. Varshney, Y. Li, B. Srinivasan, S. Tung, Sens. Actuators B. 128, 99–107 (2007)CrossRefGoogle Scholar
  33. M. Vázquez, M. Knobel, M.L. Sánchez, Sens. Actuators A 159, 20–29 (1997)CrossRefGoogle Scholar
  34. J. Wang, P.V.A. Pamidi, K.R. Rogers, Anal. Chem. 70, 1171–1175 (1998)CrossRefGoogle Scholar
  35. T. Wang, C. Lei, J. Lei, Z. Yang, Y. Zhou, Appl. Phys. A 109, 205–211 (2012)Google Scholar
  36. T. Wang, Y. Zhou, C. Lei, J. Lei, Z. Yang, Sens. Actuators B 186, 727–733 (2013)CrossRefGoogle Scholar
  37. T. Wang, Z. Yang, C. Lei, J. Lei, Y. Zhou, Biosens. Bioelectron. 58, 338–344 (2014a)CrossRefGoogle Scholar
  38. T. Wang, Z. Yang, C. Lei, J. Lei, Y. Zhou, J. Appl. Phys. 115, 223901 (2014b)CrossRefGoogle Scholar
  39. T. Wink, S.J. Van Zuilen, A. Bult, W.P. Van Bennekom, Anal. Chem. 70, 827–832 (1998)CrossRefGoogle Scholar
  40. A. Wolter, R. Niessner, M. Seidel, Anal. Chem. 80, 5854–5863 (2008)CrossRefGoogle Scholar
  41. L. Yang, R. Bashir, Biotechnol. Adv. 26, 135–150 (2008)CrossRefGoogle Scholar
  42. L.S.L. Yu, J. Uknalis, S.J. Tu, Immunol. Methods. 256, 11–18 (2001)CrossRefGoogle Scholar
  43. Y. Zhou, J.Q. Yu, X.L. Zhao, B.C. Cai, J. Appl. Phys. 89, 1961 (2001)Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Key Laboratory for Thin Film and Microfabrication of the Ministry of Education, Department of Micro/Nano Electronics, School of electronic information and electrical engineeringShanghai Jiao Tong UniversityShanghaiPeople’s Republic of China

Personalised recommendations