Advertisement

Biomedical Microdevices

, Volume 16, Issue 6, pp 915–925 | Cite as

A micro-drive hearing aid: a novel non-invasive hearing prosthesis actuator

  • Peyton Elizabeth Paulick
  • Mark W. Merlo
  • Hossein Mahboubi
  • Hamid R. Djalilian
  • Mark Bachman
Article

Abstract

The direct hearing device (DHD) is a new auditory prosthesis that combines conventional hearing aid and middle ear implant technologies into a single device. The DHD is located deep in the ear canal and recreates sounds with mechanical movements of the tympanic membrane. A critical component of the DHD is the microactuator, which must be capable of moving the tympanic membrane at frequencies and magnitudes appropriate for normal hearing, with little distortion. The DHD actuator reported here utilized a voice coil actuator design and was 3.7 mm in diameter. The device has a smoothly varying frequency response and produces a precisely controllable force. The total harmonic distortion between 425 Hz and 10 kHz is below 0.5 % and acoustic noise generation is minimal. The device was tested as a tympanic membrane driver on cadaveric temporal bones where the device was coupled to the umbo of the tympanic membrane. The DHD successfully recreated ossicular chain movements across the frequencies of human hearing while demonstrating controllable magnitude. Moreover, the micro-actuator was validated in a short-term human clinical performance study where sound matching and complex audio waveforms were evaluated by a healthy subject.

Keywords

Auditory implants Auditory prostheses Cadaveric testing Hearing aids Microactuators Temporal bone measurements 

Notes

Acknowledgements

The authors wish to thank individuals who donate their bodies and tissues for the advancement of education and research. Ethical approval for the use of human temporal bones was given through the University of California Irvine School of Medicine Willed Body Program. The authors also wish to thank Melinda JD Malley for her technical assistance in device assembly.

Conflict of interest

None declared.

References

  1. W. Chien, M.E. Ravicz, S.N. Merchant, and J.J Rosowski “The Effect of Methodological Differences in the Measurement of Stapes Motion in Live and Cadaver Ears.” Audiol. Neuro.-Otol. 11 (3) (January): 183–97.(2006) doi: 10.1159/000091815. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2917778&tool=pmcentrez&rendertype=abstract
  2. W. Chien, M.E. Ravicz, J.J. Rosowski, S.N. Merchant, Measurements of human middle- and inner-Ear mechanics with dehiscence of the superior semicircular canal. Otol. Neurotology 28(2), 250–7 (2007). doi: 10.1097/01.mao.0000244370.47320.9a CrossRefGoogle Scholar
  3. L. Chittka, A. Brockmann, Perception space--the final frontier. PLoS Biol. 3(4), e137 (2005). doi: 10.1371/journal.pbio.0030137 CrossRefGoogle Scholar
  4. K. Chung, Challenges and recent developments in hearing aids: part II. Feedback and occlusion effect reduction strategies, laser shell manufacturing processes, and other signal processing technologies. Trends Amplification 8(4), 125–164 (2004). doi: 10.1177/108471380400800402 CrossRefGoogle Scholar
  5. P. Counter, “Implantable hearing aids.” proceedings of the institution of mechanical engineers. Part H. J. Eng. Med. 222(6), 837–52 (2008)CrossRefGoogle Scholar
  6. W.F. Decraemer, “Area Change and Volume Displacement of the Human Tympanic Membrane under Static Pressure.” ReVision di: 99–104. (1992)Google Scholar
  7. W.F. Decraemer, J.J. Dirckx, and W.R. Funnell, “Shape and Derived Geometrical Parameters of the Adult, Human Tympanic Membrane Measured with a Phase-Shift Moiré Interferometer.” Heart. Res. 51 (1) (January): 107–21. (1991) http://www.ncbi.nlm.nih.gov/pubmed/2013538.
  8. H. Djalilian, and H. Mahboubi. “A Novel Method to Determine Standardized Anatomic Dimensions and Variation of the Osseous External Auditory Canal.” Otol. Neurotology: 13–18. (2011)Google Scholar
  9. R.L. Goode, M. Killion, K. Nakamura, S. Nishihara, New knowledge about the function of the human middle Ear: development of an improved analog model. Otol. Neurotology 15(2), 145 (1994)Google Scholar
  10. A.J. Gulya, Glasscock-Shambaugh Surgery of the Ear. Edited by Aina J. Gulya, Lloyd B. Minor, and Denis Poe. PMPH-USA. (2010)Google Scholar
  11. K. Homma, Y. Du, Y. Shimizu, and S. Puria “Ossicular Resonance Modes of the Human Middle Ear for Bone and Air Conduction.” J. Acoust. Soc. Am. 125 (2) (February): 968–79. (2009) doi: 10.1121/1.3056564. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2852437&tool=pmcentrez&rendertype=abstract.
  12. E.-P. Hong, II-Y. Park, K.-W. Seong, and J.-H. Cho “Evaluation of an Implantable Piezoelectric Floating Mass Transducer for Sensorineural Hearing Loss.” Mechatron. 19 (6) (September): 965–971. (2009) doi: 10.1016/j.mechatronics.2009.07.001. http://linkinghub.elsevier.com/retrieve/pii/S0957415809001275.
  13. J.V.D. Hough, M. Pamela, M.W. Wood, R. Kent Dyer, Middle Ear electromagnetic semi-implantable hearing device: results of the phase II SOUNDTEC direct system clinical trial. Otol. Neurotology 23(6), 895–903 (2002)CrossRefGoogle Scholar
  14. W.H. Ko, W. Zhu, A. Maniglia, Engineering principles of mechanical stimulation of the middle Ear. Otolaryngol. Clin. N. Am. 28, 29–41 (1995)Google Scholar
  15. S. Kochkin, MarkeTrak VII: obstacles to adult Non-user adoption of hearing aids. Heart. J. 60(4), 24 (2007)Google Scholar
  16. S. Kochkin, MarkeTrak VIII: 25-years trends in the hearing health market. Heart. Rev. 16(10), 12–31 (2009)Google Scholar
  17. H. Kurokawa, and R.L. Goode “Sound Pressure Gain Produced by the Human Middle Ear.” Otolaryngol-Head and Neck Surg.: Off. J Am. Acad. Otolaryngol.-Head and Neck Surg. 113 (4) (October): 349–55. (1995) http://www.ncbi.nlm.nih.gov/pubmed/7567003.
  18. H. Leysieffer, J.W. Baumann, G. Müller, H.P. Zenner, An implantable piezoelectric hearing Aid transducer for inner Ear deafness. II: clinical implant. HNO 45(10), 801–15 (1997)CrossRefGoogle Scholar
  19. H. Liu, Z. Rao, and N. Ta “Finite Element Analysis of the Effects of a Floating Mass Transducer on the Performance of a Middle Ear Implant.” J. Med. Eng. Technol. 35 (5–6): 316–23. (2010) doi: 10.3109/03091902.2010.481033. http://www.ncbi.nlm.nih.gov/pubmed/20459346
  20. H. Mahboubi, P.E. Paulick, Y.Ghavami, A.Y. Yau, M. Bachman, and H.R. Djalilian, “Short-Term Clinical Performance of the Direct-Drive Hearing Device: A Pilot Study.” In 147th Annual Meeting Am. Otol. Soc., Inc. (2014)Google Scholar
  21. M.S. Mannan, Lees’ Loss Prevention in the Process Industries: Hazard Identification Assessment and Control. 4th ed. Butterworth-Heinemann. (2012)Google Scholar
  22. N. Hato. S. Stenfelt, and R.L Goode “Three-Dimensional Stapes Footplate Motion in Human Temporal Bones.” Audiol. Neuro.-Otol. 8 (3): 140–52. (2003) doi: 10.1159/000069475. http://www.ncbi.nlm.nih.gov/pubmed/12679625.
  23. P. Paulick, E.H. Mahboubi, H.R. Djalilian, and M. Bachma, “Short-Term Clinical Performance of the Direct Hearing Device: A Pilot Study.” Otol. Neurotol. IN REVIEW, (2014)Google Scholar
  24. R.R. Paulsen, Statistical Shape Analysis of the Human Ear Canal with Application to In-the-Ear Hearing Aid Design. Mathematical Modelling. (2004)Google Scholar
  25. R. Perkins, J.P. Fay, P. Rucker, M. Rosen, L. Olson, S. Puria, The EarLens system: New sound transduction methods. Hear. Res. 263(1–2), 104–13 (2010). doi: 10.1016/j.heares.2010.01.012 CrossRefGoogle Scholar
  26. M.J. Shinners, C.W. Hilton, S.C. Levine, Implantable hearing devices. Curr. Opin. Otolaryngol. Head Neck Surg. 16(5), 416–9 (2008). doi: 10.1097/MOO.0b013e32830a49f0 CrossRefGoogle Scholar
  27. C. Stieger, C. Candreia, M. Kompis, G. Herrmann, F. Pfiffner, D. Widmer, and A. Andreas, “Laser Doppler Vibrometric Assessment of Middle Ear Motion in Thiel-Embalmed Heads.” Otol. Neurotol.: Off. Publ. Am. Otological Soc., Am. Neurotol. Soc. Eur. Acad. Otol. Neurotology 33 (3) (April): 311–8. (2012) doi: 10.1097/MAO.0b013e3182487de0. http://www.ncbi.nlm.nih.gov/pubmed/22377645
  28. A. Uziel, M. Mondain, P. Hagen, F. Dejean, G. Doucet, Rehabilitation for high-frequency sensorineural hearing impairment in adults with the symphonix vibrant soundbridge: a comparative study. Otol. Neurotology 24(5), 775–83 (2003)CrossRefGoogle Scholar
  29. P. Vecchia, M. Hietanen, A. Ahlborn, International commission on Non-ioninzing radiation protection: guidelines on limits of exposure to static magnetic fields. Health Phys. 96(4), 504–514 (2009)CrossRefGoogle Scholar
  30. S.E. Voss, J.J. Rosowski, S.N. Merchant, and W.T. Peake, “Acoustic Responses of the Human Middle Ear.” HearT. Research 150 (1–2) (December): 43–69. (2000) http://www.ncbi.nlm.nih.gov/pubmed/11077192

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Peyton Elizabeth Paulick
    • 1
  • Mark W. Merlo
    • 2
  • Hossein Mahboubi
    • 3
  • Hamid R. Djalilian
    • 1
    • 3
  • Mark Bachman
    • 1
  1. 1.Department of Biomedical EngineeringUniversity of California, IrvineIrvineUSA
  2. 2.Modular Bionics Inc.Santa AnaUSA
  3. 3.Department of Otolaryngology - Head and Neck SurgeryUniversity of California IrvineOrangeUSA

Personalised recommendations