Biomedical Microdevices

, Volume 16, Issue 5, pp 689–696 | Cite as

A comparative study of nano-scale coatings on gold electrodes for bioimpedance studies of breast cancer cells

  • Vaishnavi Srinivasaraghavan
  • Jeannine Strobl
  • Dong Wang
  • James R. Heflin
  • Masoud Agah


The relative sensitivity of standard gold microelectrodes for electric cell-substrate impedance sensing was compared with that of gold microelectrodes coated with gold nanoparticles, carbon nanotubes, or electroplated gold to introduce nano-scale roughness on the surface of the electrodes. For biological solutions, the electroplated gold coated electrodes had significantly higher sensitivity to changes in conductivity than electrodes with other coatings. In contrast, the carbon nanotube coated electrodes displayed the highest sensitivity to MDA-MB-231 metastatic breast cancer cells. There was also a significant shift in the peak frequency of the cancer cell bioimpedance signal based on the type of electrode coating. The results indicate that nano-scale coatings which introduce varying degrees of surface roughness can be used to modulate the frequency dependent sensitivity of the electrodes and optimize electrode sensitivity for different bioimpedance sensing applications.


Gold nanoparticles Carbon nanotubes Surface roughness Bioimpedance ECIS Breast cancer 



We would like to thank Mr. Stephen McCartney from the Nanoscale Characterization and Fabrication Laboratory (NCFL) at the Institute for Critical Technology and Applied Science (ICTAS) for his guidance in obtaining the scanning electron microscope images shown here. We would also like to thank Mr. Hamza Shakeel for his support with electroplating the devices. This work was supported by the National Science Foundation under ECCS award number 0925945.


  1. M. Abdolahad, H. Shashaani, M. Janmaleki, S. Mohajerzadeh, Silicon nanograss based impedance biosensor for label free detection of rare metastatic cells among primary cancerous colon cells, suitable for more accurate cancer staging. Biosens. Bioelectron. 59, 151–159 (2014)CrossRefGoogle Scholar
  2. L.R. Arias, C.A. Perry, L.J. Yang, Real-time electrical impedance detection of cellular activities of oral cancer cells. Biosens. Bioelectron. 25(10), 2225–2231 (2010)CrossRefGoogle Scholar
  3. G. Baranauskas, E. Maggiolini, E. Castagnola, A. Ansaldo, A. Mazzoni, G.N. Angotzi, A. Vato, D. Ricci, S. Panzeri, L. Fadiga, Carbon nanotube composite coating of neural microelectrodes preferentially improves the multiunit signal-to-noise ratio. J. Neural Eng. 8(6), 12 (2011)CrossRefGoogle Scholar
  4. M.J.P. Biggs, R.G. Richards, N. Gadegaard, R.J. McMurray, S. Affrossman, C.D.W. Wilkinson, R.O.C. Oreffo, M.J. Dalby, Interactions with nanoscale topography: adhesion quantification and signal transduction in cells of osteogenic and multipotent lineage. J. Biomed. Mater. Res. Part A 91A(1), 195–208 (2009)CrossRefGoogle Scholar
  5. J. Chen, W.-D. Zhang, J.-S. Ye, Nonenzymatic electrochemical glucose sensor based on MnO2/MWNTs nanocomposite. Electrochem. Commun. 10(9), 1268–1271 (2008)CrossRefGoogle Scholar
  6. G.T. Christopherson, H. Song, H.Q. Mao, The influence of fiber diameter of electrospun substrates on neural stem cell differentiation and proliferation. Biomaterials 30(4), 556–564 (2009)CrossRefGoogle Scholar
  7. G. Decher, J.D. Hong, J. Schmitt, Buildup of ultrathin multilayer films by a self-assembly process. 3. Consecutively alternating adsorption of anionic and cationic polyelectrolytes on charged surfaces. Thin Solid Films 210(1–2), 831–835 (1992)CrossRefGoogle Scholar
  8. D.M. DeLongchamp, P.T. Hammond, Multiple-color electrochromism from layer-by-layer-assembled polyaniline/Prussian Blue nanocomposite thin films. Chem. Mater. 16(23), 4799–4805 (2004)CrossRefGoogle Scholar
  9. Y.Y. Feng, T. Yang, W. Zhang, C. Jiang, K. Jiao, Enhanced sensitivity for deoxyribonucleic acid electrochemical impedance sensor: Gold nanoparticle/polyaniline nanotube membranes. Anal. Chim. Acta. 616(2), 144–151 (2008)CrossRefGoogle Scholar
  10. I. Giaever, C.R. Keese, A morphological biosensor for mammalian-cells. Nature 366(6455), 591–592 (1993)CrossRefGoogle Scholar
  11. A. Han, L. Yang, A.B.. Frazier, Quantification of the heterogeneity in breast cancer cell lines using whole-cell impedance spectroscopy. Clin. Cancer Res. 13(1), 139–143 (2007)Google Scholar
  12. J.R. Heflin, C. Figura, D. Marciu, Y. Liu, R.O. Claus, Thickness dependence of second-harmonic generation in thin films fabricated from ionically self-assembled monolayers. Appl. Phys. Lett. 74(4), 495–497 (1999)CrossRefGoogle Scholar
  13. K. Heileman, J. Daoud, M. Tabrizian, Dielectric spectroscopy as a viable biosensing tool for cell and tissue characterization and analysis. Biosens. Bioelectron. 49, 348–359 (2013)CrossRefGoogle Scholar
  14. A. Heller, B. Feldman, Electrochemical glucose sensors and their applications in diabetes management. Chem. Rev. 108(7), 2482–2505 (2008)CrossRefGoogle Scholar
  15. W.O. Ho, S. Krause, C.J. McNeil, J.A. Pritchard, R.D. Armstrong, D. Athey, K. Rawson, Electrochemical sensor for measurement of urea and creatinine in serum based on ac impedance measurement of enzyme-catalyzed polymer transformation. Anal. Chem. 71(10), 1940–1946 (1999)CrossRefGoogle Scholar
  16. J. Hong, K. Kandasamy, M. Marimuthu, C.S. Choi, S. Kim, Electrical cell-substrate impedance sensing as a non-invasive tool for cancer cell study. Analyst 136(2), 237–245 (2011)CrossRefGoogle Scholar
  17. S. Hrapovic, E. Majid, Y. Liu, K. Male, J.H.T. Luong, Metallic nanoparticle-carbon nanotube composites for electrochemical determination of explosive nitroaromatic compounds. Anal. Chem. 78(15), 5504–5512 (2006)CrossRefGoogle Scholar
  18. C.-J. Huang, Y.-H. Chen, C.-H. Wang, T.-C. Chou, G.-B. Lee, Integrated microfluidic systems for automatic glucose sensing and insulin injection. Sens. Actuators B-Chem. 122(2), 461–468 (2007)CrossRefGoogle Scholar
  19. I.O. K’Owino, O.A. Sadik, Impedance spectroscopy: a powerful tool for rapid biomolecular screening and cell culture monitoring. Electroanalysis 17(23), 2101–2113 (2005)CrossRefGoogle Scholar
  20. E.W. Keefer, B.R. Botterman, M.I. Romero, A.F. Rossi, G.W. Gross, Carbon nanotube coating improves neuronal recordings. Nat. Nanotechnol. 3(7), 434–439 (2008)CrossRefGoogle Scholar
  21. J.Y. Lim, H.J. Donahue, Cell sensing and response to micro- and nanostructured surfaces produced by chemical and topographic patterning. Tissue Eng. 13(8), 1879–1891 (2007)CrossRefGoogle Scholar
  22. H.Y. Lin, Y.J. Kuo, S.H. Chang, T.S. Ni, Characterization of electrospun nanofiber matrices made of collagen blends as potential skin substitutes. Biomed. Mater. 8(2), 9 (2013)CrossRefGoogle Scholar
  23. S. Liu, R. Montazami, Y. Liu, V. Jain, M.R. Lin, X. Zhou, J.R. Heflin, Q.M. Zhang, Influence of the conductor network composites on the electromechanical performance of ionic polymer conductor network composite actuators. Sens. Actuators a-Phys. 157(2), 267–275 (2010)CrossRefGoogle Scholar
  24. S. Narayanan, M. Nikkhah, J.S. Strobl, M. Agah, Analysis of the passivation layer by testing and modeling a cell impedance micro-sensor. Sens. Actuators a-Phys. 159(2), 241–247 (2010)CrossRefGoogle Scholar
  25. F. Patolsky, E. Katz, A. Bardea, I. Willner, Enzyme-linked amplified electrochemical sensing of oligonucleotide-DNA interactions by means of the precipitation of an insoluble product and using impedance spectroscopy. Langmuir 15(11), 3703–3706 (1999)CrossRefGoogle Scholar
  26. J.H. Pei, F. Tian, T. Thundat, Glucose biosensor based on the microcantilever. Anal. Chem. 76(2), 292–297 (2004)CrossRefGoogle Scholar
  27. A.R.A. Rahman, C.M. Lo, S. Bhansali, A detailed model for high-frequency impedance characterization of ovarian cancer epithelial cell layer using ECIS electrodes. IEEE Trans. Biomed. Eng. 56(2), 485–492 (2009)CrossRefGoogle Scholar
  28. Q. Shen, S.K. You, S.G. Park, H. Jiang, D.D. Guo, B.A. Chen, X.M. Wang, Electrochemical Biosensing for cancer cells based on TiO2/CNT nanocomposites modified electrodes. Electroanalysis 20(23), 2526–2530 (2008)CrossRefGoogle Scholar
  29. F.M. Spiga, A. Bonyar, B. Ring, M. Onofri, A. Vinelli, H. Santha, C. Guiducci, G. Zuccheri, Hybridization chain reaction performed on a metal surface as a means of signal amplification in SPR and electrochemical biosensors. Biosens. Bioelectron. 54, 102–108 (2014)CrossRefGoogle Scholar
  30. V. Srinivasaraghavan, J. Strobl, M. Agah, Bioimpedance rise in response to histone deacetylase inhibitor is a marker of mammary cancer cells within a mixed culture of normal breast cells. Lab Chip 12(24), 5168–5179 (2012)CrossRefGoogle Scholar
  31. M.M. Stevens, J.H. George, Exploring and engineering the cell surface interface. Science 310(5751), 1135–1138 (2005)CrossRefGoogle Scholar
  32. T. Sun, H. Morgan, Single-cell microfluidic impedance cytometry: a review. Microfluid. Nanofluid. 8(4), 423–443 (2010)CrossRefGoogle Scholar
  33. J.D. Trono, K. Mizuno, N. Yusa, T. Matsukawa, K. Yokoyama, M. Uesaka, Size, concentration and incubation time dependence of gold nanoparticle uptake into pancreas cancer cells and its future application to x-ray drug delivery system. J. Radiat. Res. 52(1), 103–109 (2011)CrossRefGoogle Scholar
  34. D. Wang, H. Shakeel, J. Lovette, G.W. Rice, J.R. Heflin, M. Agah, Highly stable surface functionalization of Microgas chromatography columns using layer-by-layer self-assembly of silica nanoparticles. Anal. Chem. 85, 8135–8141 (2013)CrossRefGoogle Scholar
  35. Z.Y. Wang, J.R. Heflin, K. Van Cott, R.H. Stolen, S. Ramachandran, S. Ghalmi, Biosensors employing ionic self-assembled multilayers adsorbed on long-period fiber gratings. Sens. Actuators B-Chem. 139(2), 618–623 (2009)CrossRefGoogle Scholar
  36. J. Wegener, C.R. Keese, I. Giaever, Electric cell-substrate impedance sensing (ECIS) as a noninvasive means to monitor the kinetics of cell spreading to artificial surfaces. Exp. Cell Res. 259(1), 158–166 (2000)CrossRefGoogle Scholar
  37. C. Xiao, J.H.T. Luong, On-line monitoring of cell growth and cytotoxicity using electric cell-substrate impedance sensing (ECIS). Biotechnol. Prog. 19(3), 1000–1005 (2003)CrossRefGoogle Scholar
  38. H.N. Zhang, J. Shih, J. Zhu, N.A. Kotov, Layered nanocomposites from gold nanoparticles for neural prosthetic devices. Nano Lett. 12(7), 3391–3398 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Vaishnavi Srinivasaraghavan
    • 1
  • Jeannine Strobl
    • 2
  • Dong Wang
    • 4
  • James R. Heflin
    • 4
  • Masoud Agah
    • 3
  1. 1.Bradley Department of Electrical and Computer EngineeringVirginia TechBlacksburgUSA
  2. 2.Bradley Department of Electrical and Computer EngineeringVirginia TechBlacksburgUSA
  3. 3.Bradley Department of Electrical and Computer EngineeringVirginia TechBlacksburgUSA
  4. 4.Department of PhysicsVirginia TechBlacksburgUSA

Personalised recommendations