Biomedical Microdevices

, Volume 16, Issue 4, pp 567–573 | Cite as

Controlled ultrasonic micro-dissection of thin tissue sections

  • Changhai Ru
  • Jun Liu
  • Ming Pang
  • Yu Sun


In order to obtain sufficient quantities of pure populations of cells or a single cell from surrounding tissue for analytical investigation, we have developed an ultrasonic microdissection system. The system utilizes a vision-based method for detecting the contact between the microdissection needle tip and a target surface. A multilayer stack piezoelectric actuator is employed to generate ultrasonic vibrations for histological isolation. Automated micro-dissection is also realized using visual feedback and vision-based control. Experimental results on tumor tissue sections show that the system has a high dissection accuracy and efficiency and is able to realize dissecting arbitrary shapes in specified locations on a tissue sample. Furthermore, effects in variations of vibration amplitude and frequency of ultrasonic micro-dissection as well as needle insertion depths on micro-dissection accuracy and speed were evaluated.


Piezoelectric actuator Ultrasonic vibration Depth control Tissue microdissection Parameter selection 



This work was financially supported by National Natural Science of China (Grant No. 61233010), Instrument Development Major Program of National Natural Science of China (Grant No. 61327811), Jiangsu Natural Science Founds for Distinguished Young Scholar (Grant No. BK2012005), and Qing Lan Project of Jiangsu Province.


  1. K. Aoki, H.T. Miyazaki, H. Hirayama, K. Inoshita, T. Baba, K. Sakoda, N. Shinya, Y. Aoyagi, Microassembly of semiconductor threedimensional photonic crystals. Nat. Mater. 2(2), 117–121 (2003)CrossRefGoogle Scholar
  2. S. Brandt, C. Walz, M. Schad, N. Pavlovic, J. Kehr, A simple, chisel-assisted mechanical microdissection system for harvesting homogeneous plant tissue suitable for the analysis of nucleic acids and proteins. Plant Mol. Biol. Report. 21, 417–427 (2003)CrossRefGoogle Scholar
  3. V. Chawda, M.K. O’Malley, Vision-based force sensing for nanomanipulation. IEEE/ASME Trans. Mechatron. 16, 1171–1183 (2011)CrossRefGoogle Scholar
  4. L. Chen, C. Ru, W. Rong, Y. Liu, L. Sun, Design, modeling and control of a piezoelectric ultrasonic microdissection technique for the molecular analysis of tissue. Smart Mater. Struct. 19, 025003 (2010)CrossRefGoogle Scholar
  5. R. Deeken, P. Ache, I. Kajahn, J. Klinkenberg, G. Bringmann, R. Hedrich, Identification of Arabidopsis thaliana phloem RNAs provides a search criterion for phloem-based transcripts hidden in complex datasets of microarray experiments. Plant J. 55, 746–759 (2008)CrossRefGoogle Scholar
  6. V. Eichhorn, S. Fatikow, T. Wich, C. Dahmen, T. Sievers, K. Andersen, K. Carlson, P. Bggild, Depth-detection methods for microgripper based cnt manipulation in a scanning electron microscope. J. Micro-Nano Mechatron. 4(1), 27–36 (2008)CrossRefGoogle Scholar
  7. T. Fukuda, F. Arai, L. Dong, Assembly of nanodevices with carbon nanotubes through nanorobotic manipulations. Proc. IEEE 91(11), 1803–1818 (2003)CrossRefGoogle Scholar
  8. H. Haitjema, W. Pril, P.H.J. Schellekens, A silicon-etched needle for 3-D coordinate measurements with an uncertainty below 0.1 um. IEEE Trans. Instrum. Meas. 50(6), 1519–1523 (2001)CrossRefGoogle Scholar
  9. M. Harsch, K. Bendrat, G. Hofmeier, D. Branscheid, A. Niendorf, A new method for histological microdissection utilizing an ultrasonically oscillating needle: demonstrated by differential mRNA expression in human lung carcinoma tissue. Am. J. Pathol. 158, 1985–1990 (2001)CrossRefGoogle Scholar
  10. A. Ichikawa, T. Tanikawa, S. Akagi, K. Ohba, Automatic cell cutting by high-precision microfluidic control. J. Robot. Mechatron. 23(1), (2011)Google Scholar
  11. H.A. Ishii, G.A. Graham, A.T. Kearsley, P.G. Grant, C.J. Snead, J.P. Bradley, Rapid extraction of dust impact tracks from silica aerogel by ultrasonic microblades. Meteorit. Planet. Sci. 40, 1741–1747 (2005)CrossRefGoogle Scholar
  12. J.L. McLachlan, A.J. Smith, P.R. Cooper, Piezo-power microdissection of mature human dental tissue. Arch. Oral Biol. 48, 731–736 (2003)CrossRefGoogle Scholar
  13. E. Shamoto, T. Moriwaki, Study on elliptical vibration cutting. Ann. CIRP 43/1, 35–38 (1994)CrossRefGoogle Scholar
  14. M. Sitti, H. Hashimoto, Two-dimensional fine particle positioning under optical microscope using a piezoresistive cantilever as a manipulator. J. Micromechatronics 1(1), 25–48 (2000)CrossRefGoogle Scholar
  15. U. Terpitz, D. Zimmermann, Isolation of guard cells from fresh epidermis using a piezo-power microdissection system with vibration attenuated needles. BioTechniques 48(1), 68–70 (2010)CrossRefGoogle Scholar
  16. G. Trummer, C. Kurzals, R. Gehring, D. Leistner, Next-generation proximity and position sensors. Sensors 21(3), 14–21 (2004)Google Scholar
  17. W.H. Wang, X.Y. Liu, Y. Sun, Contact detection in microrobotic manipulation. Int. J. Robot. Res. 26(8), 821–828 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.College of AutomationHarbin Engineering UniversityHarbinChina
  2. 2.Jiangsu Provincial Key Laboratory of Advanced Robotics & Collaborative Innovation Center of Suzhou Nano Science and TechnologySoochow UniversitySuzhouChina
  3. 3.Department of Mechanical and Industrial EngineeringUniversity of TorontoTorontoCanada

Personalised recommendations