Biomedical Microdevices

, Volume 16, Issue 3, pp 387–395 | Cite as

Microfluidic direct writer with integrated declogging mechanism for fabricating cell-laden hydrogel constructs

  • Setareh Ghorbanian
  • Mohammad A. Qasaimeh
  • Mohsen Akbari
  • Ali Tamayol
  • David Juncker


Cell distribution and nutrient supply in 3D cell-laden hydrogel scaffolds are critical and should mimic the in vivo cellular environment, but been difficult to control with conventional fabrication methods. Here, we present a microfluidic direct writer (MFDW) to construct 3D cell-laden hydrogel structures with openings permitting media exchange. The MFDW comprises a monolithic microfluidic head, which delivers coaxial streams of cell-laden sodium alginate and calcium chloride solutions to form hydrogel fibers. Fiber diameter is controlled by adjusting the ratio of the volumetric flow rates. The MFDW head is mounted on a motorized stage, which is automatically controlled and moves at a speed synchronized with the speed of fiber fabrication. Head geometry, flow rates, and viscosity of the writing solutions were optimized to prevent the occurrence of curling and bulging. For continuous use, a highly reliable process is needed, which was accomplished with the integration of a declogging conduit supplying a solvent to dissolve the clogging gel. The MFDW was used for layer-by-layer fabrication of simple 3D structures with encapsulated cells. Assembly of 3D structures with distinct fibers is demonstrated by alternatively delivering two different alginate gel solutions. The MFDW head can be built rapidly and easily, and will allow 3D constructs for tissue engineering to be fabricated with multiple hydrogels and cell types.


Microfluidic coaxial flow Direct writing Cell-laden constructs Calcium alginate Tissue engineering 3D cell scaffold 



We acknowledge funding from Natural Sciences and Engineering Research Council of Canada (NSERC), The Canadian Institutes of Health Research (CIHR), Certified Human Resources Professional (CHRP), Genome Canada, Genome Quebec, and Canada Foundation for Innovation (CFI.) M.A.Q. acknowledges Alexander Graham Bell Canada Graduate Scholarship (CGSD), M.A and A. T. acknowledge NSERC Postdoctoral fellowships, and D.J. acknowledges support from a Canada Research Chair. The authors thank Adiel Malik, Veronique Laforte, Sebastien Bergeron, and Kate Turner for critical reading of the manuscript.

Supplementary material

10544_2014_9842_MOESM1_ESM.docx (342 kb)
ESM 1 (DOCX 341 kb)

(WMV 19161 kb)


  1. M. Akbari, D. Sinton, M. Bahrami, Pressure drop in rectangular microchannels as compared with theory based on arbitrary cross section. J. Fluids Eng. 131, 041202 (2009)CrossRefGoogle Scholar
  2. N. Annabi, A. Tamayol, J.A. Uquillas, M. Akbari, L. E. Bertassoni, C. Cha, G. Camci-Unal, M. R. Dokmeci, N. A. Peppas, A. Khademhosseini, 25th Anniversary Article: Rational design and applications of hydrogels in regenerative medicine. Advanced Materials. 26, 85–124 (2014)Google Scholar
  3. S. Arumuganathar, S. Irvine, J.R. McEwan, S.N. Jayasinghe, A novel direct aerodynamically assisted threading methodology for generating biologically viable microthreads encapsulating living primary cells. J. Appl. Polym. Sci. 107(2), 1215–1225 (2008)CrossRefGoogle Scholar
  4. S.M. Berry, S.P. Warren, D.A. Hilgart, A.T. Schworer, S. Pabba, A.S. Gobin, R.W. Cohn, R.S. Keynton, Endothelial cell scaffolds generated by 3D direct writing of biodegradable polymer microfibers. Biomaterials 32(7), 1872–1879 (2011)CrossRefGoogle Scholar
  5. E.J. Chung, M.J. Sugimoto, J. Koh, G. Ameer, Low pressure foaming: a novel method for the fabrication of porous scaffolds for tissue engineering. Tissue Eng. 18(2), 113–121 (2011)CrossRefGoogle Scholar
  6. B.G. Chung, K.-H. Lee, A. Khademhosseini, S.-H. Lee, Microfluidic fabrication of microengineered hydrogels and their application in tissue engineering. Lab Chip 12(1), 45–59 (2012)CrossRefGoogle Scholar
  7. V. Ellä, T. Annala, S. Länsman, M. Nurminen, M. Kellomäki, Knitted polylactide 96/4 L/D structures and scaffolds for tissue engineering. Biomatter 1(1), 102–113 (2012)CrossRefGoogle Scholar
  8. N.E. Fedorovich, W. Schuurman, H.M. Wijnberg, H.-J. Prins, P.R. van Weeren, J. Malda, J. Alblas, W.J.A. Dhert, Biofabrication of osteochondral tissue equivalents by printing topologically defined, cell-laden hydrogel scaffolds. Tissue Eng. C 18(1), 33–44 (2012)CrossRefGoogle Scholar
  9. R. Gaetani, P.A. Doevendans, C.H.G. Metz, J. Alblas, E. Messina, A. Giacomello, J.P.G. Sluijter, Cardiac tissue engineering using tissue printing technology and human cardiac progenitor cells. Biomaterials 33(6), 1782–1790 (2012)CrossRefGoogle Scholar
  10. R. Gauvin, Y.C. Chen, J.W. Lee, P. Soman, P. Zorlutuna, J.W. Nichol, H. Bae, S. Chen, A. Khademhosseini, Microfabrication of complex porous tissue engineering scaffolds using 3D projection stereolithography. Biomaterials 33(15), 3824–3834 (2012)CrossRefGoogle Scholar
  11. S. Ghorbanian, M.A. Qasaimeh, D. Juncker, Rapid prototyping of branched microfluidics in PDMS using capillaries. Chips and Tips (2010), Accessed 13 Feb 2014
  12. L.D. Harris, B.-S. Kim, D.J. Mooney, Open pore biodegradable matrices formed with gas foaming. J. Biomed. Mater. Res. 42(3), 396–402 (1998)CrossRefGoogle Scholar
  13. M.-H. Ho, P.-Y. Kuo, H.-J. Hsieh, T.-Y. Hsien, L.-T. Hou, J.-Y. Lai, D.-M. Wang, Preparation of porous scaffolds by using freeze-extraction and freeze-gelation methods. Biomaterials 25(1), 129–138 (2004)CrossRefGoogle Scholar
  14. S.J. Hollister, Porous scaffold design for tissue engineering. Nat. Mater. 4(7), 518–524 (2005)CrossRefGoogle Scholar
  15. C.M. Hwang, A. Khademhosseini, Y. Park, K. Sun, S.-H. Lee, Microfluidic chip-based fabrication of PLGA microfiber scaffolds for tissue engineering. Langmuir 24(13), 6845–6851 (2008)CrossRefGoogle Scholar
  16. C. Hwang, Y. Park, J. Park, K. Lee, K. Sun, A. Khademhosseini, S. Lee, Controlled cellular orientation on PLGA microfibers with defined diameters. Biomed. Microdevices 11(4), 739–746 (2009)CrossRefGoogle Scholar
  17. E. Kang, G.S. Jeong, Y.Y. Choi, K.H. Lee, A. Khademhosseini, S.-H. Lee, Digitally tunable physicochemical coding of material composition and topography in continuous microfibres. Nat. Mater. 10, 877–883 (2011)CrossRefGoogle Scholar
  18. K. Katoh, T. Tanabe, K. Yamauchi, Novel approach to fabricate keratin sponge scaffolds with controlled pore size and porosity. Biomaterials 25(18), 4255–4262 (2004)CrossRefGoogle Scholar
  19. G.H. Kim, S.H. Ahn, H.J. Lee, S.Y. Lee, Y. Cho, W. Chun, A new hybrid scaffold using rapid prototyping and electrohydrodynamic direct writing for bone tissue regeneration. J. Mater. Chem. 21, 19138–19143 (2011)CrossRefGoogle Scholar
  20. R. Landers, A. Pfister, U. Hübner, H. John, R. Schmelzeisen, R. Mülhaupt, Fabrication of soft tissue engineering scaffolds by means of rapid prototyping techniques. J. Mater. Sci. 37(15), 3107–3116 (2002)CrossRefGoogle Scholar
  21. B.R. Lee, K.H. Lee, E. Kang, D.-S. Kim, S.-H. Lee, Microfluidic wet spinning of chitosan-alginate microfibers and encapsulation of HepG2 cells in fibers. Biomicrofluidics 5(2), 022208 (2011a)CrossRefGoogle Scholar
  22. G.-S. Lee, J.-H. Park, U.S. Shin, H.-W. Kim, Direct deposited porous scaffolds of calcium phosphate cement with alginate for drug delivery and bone tissue engineering. Acta Biomater. 7(8), 3178–3186 (2011b)CrossRefGoogle Scholar
  23. L. Leng, A. McAllister, B. Zhang, M. Radisic, A. Günther, Mosaic hydrogels: one-step formation of multiscale soft materials. Adv. Mater. 24(27), 3650–3658 (2012)CrossRefGoogle Scholar
  24. M.P. Lutolf, J.A. Hubbell, Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat. Biotechnol. 23(1), 47–55 (2005)CrossRefGoogle Scholar
  25. S. Mazzitelli, L. Capretto, D. Carugo, X. Zhang, R. Piva, C. Nastruzzi, Optimised production of multifunctional microfibres by microfluidic chip technology for tissue engineering applications. Lab Chip 11, 1776–1785 (2011)CrossRefGoogle Scholar
  26. G. Mazzoleni, D. Di Lorenzo, N. Steimberg, Modelling tissues in 3D: the next future of pharmaco-toxicology and food research? Genes Nutr. 4(1), 13–22 (2009)Google Scholar
  27. L. Moroni, J.R. de Wijn, C.A. van Blitterswijk, Integrating novel technologies to fabricate smart scaffolds. J. Biomater. Sci. Polym. Ed. 19(5), 543–572 (2008)CrossRefGoogle Scholar
  28. F.T. Moutos, L.E. Freed, F. Guilak, A biomimetic three-dimensional woven composite scaffold for functional tissue engineering of cartilage. Nat. Mater. 6(2), 162–167 (2007)CrossRefGoogle Scholar
  29. Y.S. Nam, T.G. Park, Biodegradable polymeric microcellular foams by modified thermally induced phase separation method. Biomaterials 20(19), 1783–1790 (1999)CrossRefGoogle Scholar
  30. S.C. Neves, L.S. Moreira Teixeira, L. Moroni, R.L. Reis, C.A. Van Blitterswijk, N.M. Alves, M. Karperien, J.F. Mano, Chitosan/Poly(ɛ-caprolactone) blend scaffolds for cartilage repair. Biomaterials 32(4), 1068–1079 (2011)CrossRefGoogle Scholar
  31. C. Norotte, F.S. Marga, L.E. Niklason, G. Forgacs, Scaffold-free vascular tissue engineering using bioprinting. Biomaterials 30(30), 5910–5917 (2009)CrossRefGoogle Scholar
  32. H. Onoe, T. Okitsu, A. Itou, M. Kato-Negishi, R. Gojo, D. Kiriya, K. Sato, S. Miura, S. Iwanaga, K. Kuribayashi-Shigetomi, Y. Shimoyama, Y.T. Matsunaga, S. Takeuchi, Metre-long cell-laden microfibres exhibit tissue morphologies and functions. Nat. Mater. 12, 584–590 (2013)CrossRefGoogle Scholar
  33. R. Opik, A. Hunt, A. Ristolainen, P.M. Aubin, M. Kruusmaa, Development of high fidelity liver and kidney phantom organs for use with robotic surgical systems Biomedical Robotics and Biomechatronics (BioRob), 2012 4th IEEE RAS & EMBS International Conference on (2012), pp. 425–430Google Scholar
  34. F. Pampaloni, E.G. Reynaud, E.H.K. Stelzer, The third dimension bridges the gap between cell culture and live tissue. Nat. Rev. Mol. Cell Biol. 8(10), 839–845 (2007)CrossRefGoogle Scholar
  35. J.S. Park, D.G. Woo, B.K. Sun, H.-M. Chung, S.J. Im, Y.M. Choi, K. Park, K.M. Huh, K.-H. Park, In vitro and in vivo test of PEG/PCL-based hydrogel scaffold for cell delivery application. J. Control. Release 124(1–2), 51–59 (2007)CrossRefGoogle Scholar
  36. C.M. Perrault, M.A. Qasaimeh, T. Brastaviceanu, K. Anderson, Y. Kabakibo, D. Juncker, Rev. Sci. Instrum. 81(11), 115107–115108 (2010)CrossRefGoogle Scholar
  37. J.A. Rowley, D.J. Mooney, Alginate type and RGD density control myoblast phenotype. J. Biomed. Mater. Res. 60(2), 217–223 (2002)CrossRefGoogle Scholar
  38. P. Schiavone, F. Chassat, T. Boudou, E. Promayon, F. Valdivia, Y. Payan, In vivo measurement of human brain elasticity using a light aspiration device. Med. Image Anal. 13(4), 673–678 (2009)CrossRefGoogle Scholar
  39. Z. Shi, N. Chen, Y. Du, A. Khademhosseini, M. Alber, Stochastic model of self-assembly of cell-laden hydrogels. Phys. Rev. E 80(6), 061901 (2009)CrossRefGoogle Scholar
  40. S.-J. Shin, J.-Y. Park, J.-Y. Lee, H. Park, Y.-D. Park, K.-B. Lee, C.-M. Whang, S.-H. Lee, “On the fly” continuous generation of alginate fibers using a microfluidic device. Langmuir 23(17), 9104–9108 (2007)CrossRefGoogle Scholar
  41. A. Steinbuchel, Alginates: Biology and Applications (Springer, Germany, 2009)Google Scholar
  42. J. Sun, H. Tan, Alginate-based biomaterials for regenerative medicine applications. Materials 6(4), 1285–1309 (2013)CrossRefMathSciNetGoogle Scholar
  43. A. Tamayol, M. Akbari, N. Annabi, A. Paul, A. Khademhosseini, D. Juncker, Fiber-based tissue engineering: Progress, challenges, and opportunities. Biotechnology Advances 31(5), 669–687 (2013)Google Scholar
  44. K.H. Tan, C.K. Chua, K.F. Leong, C.M. Cheah, W.S. Gui, W.S. Tan, F.E. Wiria, Selective laser sintering of biocompatible polymers for applications in tissue engineering. Biomed. Mater. Eng. 15(1), 113–124 (2005)Google Scholar
  45. L. Vogelaar, J.N. Barsema, C.J.M. van Rijn, W. Nijdam, M. Wessling, Phase separation micromolding—PSμM. Adv. Mater. 15(16), 1385–1389 (2003)CrossRefGoogle Scholar
  46. X. Wang, W. Li, V. Kumar, A method for solvent-free fabrication of porous polymer using solid-state foaming and ultrasound for tissue engineering applications. Biomaterials 27(9), 1924–1929 (2006)CrossRefGoogle Scholar
  47. F.E. Wiria, K.F. Leong, C.K. Chua, Y. Liu, Poly-ε-caprolactone/hydroxyapatite for tissue engineering scaffold fabrication via selective laser sintering. Acta Biomater. 3(1), 1–12 (2007)CrossRefGoogle Scholar
  48. K.M. Yamada, E. Cukierman, Modeling tissue morphogenesis and cancer in 3D. Cell 130(4), 601–610 (2007)CrossRefGoogle Scholar
  49. M. Yamada, S. Sugaya, Y. Naganuma, M. Seki, Microfluidic synthesis of chemically and physically anisotropic hydrogel microfibers for guided cell growth and networking. Soft Matter 8, 3122–3130 (2012)CrossRefGoogle Scholar
  50. Y. Yokoyama, S. Hattori, C. Yoshikawa, Y. Yasuda, H. Koyama, T. Takato, H. Kobayashi, Novel wet electrospinning system for fabrication of spongiform nanofiber 3-dimensional fabric. Mater. Lett. 63(9–10), 754–756 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Setareh Ghorbanian
    • 1
  • Mohammad A. Qasaimeh
    • 2
  • Mohsen Akbari
    • 1
  • Ali Tamayol
    • 1
  • David Juncker
    • 1
    • 3
  1. 1.Biomedical Engineering DepartmentMcGill University and Genome Quebec Innovation Centre, McGill UniversityMontréalCanada
  2. 2.Division of EngineeringNew York University Abu DhabiAbu DhabiUnited Arab Emirates
  3. 3.Department of Neurology and NeurosurgeryMcGill UniversityMontréalCanada

Personalised recommendations