Biomedical Microdevices

, Volume 16, Issue 1, pp 23–33 | Cite as

Optimization of flow assisted entrapment of pollen grains in a microfluidic platform for tip growth analysis

  • Amir Sanati Nezhad
  • Mahmood Ghanbari
  • Carlos G. Agudelo
  • Mahsa Naghavi
  • Muthukumaran Packirisamy
  • Rama B. Bhat
  • Anja Geitmann


A biocompatible polydimethylsiloxane (PDMS) biomicrofluidic platform is designed, fabricated and tested to study protuberance growth of single plant cells in a micro-vitro environment. The design consists of an inlet to introduce the cell suspension into the chip, three outlets to conduct the medium or cells out of the chip, a main distribution chamber and eight microchannels connected to the main chamber to guide the growth of tip growing plant cells. The test cells used here were pollen grains which produce cylindrical protrusions called pollen tubes. The goal was to adjust the design of the microfluidic network with the aim to enhance the uniformly distributed positioning of pollen grains at the entrances of the microchannels and to provide identical fluid flow conditions for growing pollen tubes along each microchannel. Computational fluid analysis and experimental testing were carried out to estimate the trapping efficiencies of the different designs.


Pollen grain Pollen tube Tip growing cell Biomicrofluidic Cell entrapment 



The authors acknowledge research support from the Fonds de recherche du Québec - Nature et Technologies (FQRNT) and Concordia Research Chair.


  1. C.G. Agudelo, A. Sanati Nezhad, M. Ghanbari, M. Packirisamy, A. Geitmann, J. Micromech. Microeng. 22, 115009 (2012)CrossRefGoogle Scholar
  2. C.G. Agudelo, A. Sanati Nezhad, M. Ghanbari, M. Naghavi, M. Packirisamy, R.B. Bhat, A. Geitmann, Plant J. 73, 1057–1068 (2013)CrossRefGoogle Scholar
  3. H. Andersson, A.V. Berg, Sensors Actuators 92, 315–325 (2003)CrossRefGoogle Scholar
  4. F. Bou Daher, A. Geitmann, Traffic 12, 1537–1551 (2012)CrossRefGoogle Scholar
  5. J. Bove, B. Vaillancourt, J. Kroeger, P.K. Hepler, P.W. Wiseman, A. Geitmann, Plant Physiol. 147, 1646–1658 (2008)CrossRefGoogle Scholar
  6. F. Bragheri, L. Ferrara, N. Bellini, K.C. Vishnubhatla, P. Minzioni, R. Ramponi, R. Osellame, I. Cristiani, J. Biophoton. 3, 234–243 (2010)CrossRefGoogle Scholar
  7. T. Braschler, R. Johann, M. Heule, L. Metref, P. Renaud, Lab Chip 5, 553–559 (2005)CrossRefGoogle Scholar
  8. S. Burgarella, S. Merlo, B. Dell'Anna, G. Zarola, M. Bianchessi, Microelectron. Eng. 87, 2124–2133 (2010)CrossRefGoogle Scholar
  9. Y. Chebli, A. Geitmann, Funct. Plant Sci. Biotechnol. 1, 232–245 (2007)Google Scholar
  10. K.C. Cheung, P. Renaud, Solid State Electron. 50, 551–557 (2006)CrossRefGoogle Scholar
  11. J. Dinesh, in Proceedings of the COMSOL Conference, Bangalore, 2009Google Scholar
  12. P. Fayant, O. Girlanda, Y. Chebli, C.E. Aubin, I. Villemure, A. Geitmann, Plant Cell Online 22, 2579–2593 (2010)CrossRefGoogle Scholar
  13. A. Geitmann, E. Parre, Sex Plant Reprod 17, 9–16 (2004)CrossRefGoogle Scholar
  14. I. Giouroudi, J. Kosel, C. Scheffer, Recent Patents Eng. 2, 114–121 (2008)CrossRefGoogle Scholar
  15. G. Grossmann, W.J. Guo, D.W. Ehrhardt, W.B. Frommer, R.V. Sit, S.R. Quake, M. Meier, Plant Cell Online 23, 4234–4240 (2011)CrossRefGoogle Scholar
  16. M.P. Hughes, H. Morgan, J. Phys. D. Appl. Phys. 31, 2205–2215 (1998)CrossRefGoogle Scholar
  17. R.S. Kanea, S. Takayamaa, E. Ostuni, D.E. Ingberb, G.M. Whitesides, Biomaterials 161, 1980–2004 (2007)Google Scholar
  18. M. Kendrick, D. McIntyre, O. Ostroverkhova, JOSA B 26, 2189–2198 (2009)CrossRefGoogle Scholar
  19. S. Kobel, A. Valero, J. Latt, P. Renaud, M. Lutolf, Lab Chip 10, 857–863 (2010)CrossRefGoogle Scholar
  20. J. Kroeger, A. Geitmann, Plant Signal. Behav. 6, 1828–1858 (2011a)CrossRefGoogle Scholar
  21. J. Kroeger, A. Geitmann, Mech. Res. Commun. 42, 32–39 (2011b)CrossRefGoogle Scholar
  22. J.H. Kroeger, A. Geitmann, M. Grant, J. Theor. Biol. 253, 363–374 (2008)CrossRefGoogle Scholar
  23. J.H. Kroeger, F.B. Daher, M. Grant, A. Geitmann, Biophys. J. 97, 1822–1831 (2009)CrossRefGoogle Scholar
  24. S.W. Lee, J.Y. Kang, I.H. Lee, S.S. Ryu, S.M. Kwak, K.S. Shin, C. Kim, H.I. Jung, T.S. Kim, Sensors Actuators A Phys. 143, 64–69 (2008)CrossRefGoogle Scholar
  25. B. Ma, V. Ruwet, P. Corieri, R. Theunissen, M. Riethmuller, C. Darquenne, J. Aerosol Sci. 40, 403–414 (2009)CrossRefGoogle Scholar
  26. A. Melling, Meas. Sci. Technol. 8, 1406 (1997)CrossRefGoogle Scholar
  27. M. Mrksich, C.S. Chen, Y. Xia, L.E. Dike, D.E. Ingber, G.M. Whitesides, Proc. Natl. Acad. Sci. 93, 10775–10778 (1996)CrossRefGoogle Scholar
  28. E. Nuxoll, R. Siegel, Eng. Med. Biol. Mag. IEEE 28, 31–39 (2009)CrossRefGoogle Scholar
  29. A. Sanati Nezhad, M. Ghanbari, C.G. Agudelo, M. Packirisamy, R.B. Bhat, A. Geitmann, IEEE Sensors 13, 601–609 (2013a)CrossRefGoogle Scholar
  30. A. Sanati Nezhad, M. Packirisamy, R.B. Bhat, A. Geitmann, Proc. Natl. Acad. Sci. 110, 8093–8098 (2013b)CrossRefGoogle Scholar
  31. A. Sanati Nezhad, M. Packirisamy, R.B. Bhat, A. Geitmann, Lab Chip 13, 2599–2608 (2013c)CrossRefGoogle Scholar
  32. A. Sanati Nezhad, M. Packirisamy, R.B. Bhat, A. Geitmann, Biomed. Eng. IEEE Trans. (2013d). doi: 10.1109/TBME.2013.2270914
  33. J. Seo, C. Ionescu-Zanetti, J. Diamond, R. Lal, L.P. Lee, Appl. Phys. Lett. 84, 1973–1978 (2004)CrossRefGoogle Scholar
  34. S. Takayama, E. Ostuni, P. LeDuc, K. Naruse, D.E. Ingber, G.M. Whitesides, Nature 411, 1016 (2001)CrossRefGoogle Scholar
  35. W. Tan, T.A. Desai, Tissue Eng. 9, 255–267 (2003)CrossRefGoogle Scholar
  36. W.H. Tan, S. Takeuchi, Proc. Natl. Acad. Sci. 104, 1146–1151 (2007)CrossRefGoogle Scholar
  37. H. Vogler, C. Draeger, A. Weber, D. Felekis, C. Eichenberger, A.L. Routier-Kierzkowska, A. Boisson-Dernier, C. Ringli, B.J. Nelson, R.S. Smith, U. Grossniklaus, Plant J. 73, 617–627 (2012)CrossRefGoogle Scholar
  38. A.R. Wheeler, W.R. Throndset, R.J. Whelan, A.M. Leach, R.N. Zare, Y.H. Liao, K. Farrell, I.D. Manger, A. Daridon, Anal. Chem. 75, 3581–3586 (2003)CrossRefGoogle Scholar
  39. M. Yang, C.W. Li, J. Yang, Anal. Chem. 74, 3991–4001 (2002)CrossRefGoogle Scholar
  40. K. Yasuda, Sensors Actuators B Chem. 64, 128–135 (2000)CrossRefGoogle Scholar
  41. R. Zerzour, J. Kroeger, A. Geitmann, Dev. Biol. 334, 437–446 (2009)CrossRefGoogle Scholar
  42. M. Zhang, L. Wang, K. Xiao, W. Wen, Lab Chip 10, 1199–1203 (2010)CrossRefGoogle Scholar
  43. B. Ziaie, A. Baldi, M. Lei, Y. Gu, R.A. Siegel, Adv. Drug Deliv. Rev. 56, 145–172 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Amir Sanati Nezhad
    • 1
  • Mahmood Ghanbari
    • 1
  • Carlos G. Agudelo
    • 1
  • Mahsa Naghavi
    • 2
  • Muthukumaran Packirisamy
    • 1
  • Rama B. Bhat
    • 1
  • Anja Geitmann
    • 2
  1. 1.Optical-Bio Microsystem Laboratory, Department of Mechanical and Industrial EngineeringConcordia UniversityMontrealCanada
  2. 2.Institut de Recherche en Biologie Végétale, Département de Sciences BiologiquesUniversity of de MontrealMontrealCanada

Personalised recommendations