Biomedical Microdevices

, Volume 15, Issue 6, pp 1015–1024 | Cite as

Assessment of navigation control strategy for magnetotactic bacteria in microchannel: toward targeting solid tumors

  • Ouajdi Felfoul
  • Sylvain Martel


This paper presents a Magnetotactic Bacteria (MTB) navigation and aggregation technique that allows targeting without prior knowledge of the exact architecture of the vessels network. The MTB’s active motility combined with magnetotaxism (their ability to swim following the magnetic field direction) offer new possibilities for the delivery of drugs to tumors. Many tumor microenvironment parameters such as the malformed angiogenesis capillaries, the heterogeneous blood flow, and the high interstitial pressure affect the delivery of blood-borne drugs to the tumor. Microorganisms used as microcarriers might be helpful in bypassing these limitations while helping to uniformly distribute the drug in the targeted area. Since the angiogenesis network of blood vessels that the tumors recruit is highly disorganized and unpredictable, the magnetic control method adopted account for these parameters to achieve targeting. We demonstrate the effectiveness of the proposed method using a microchannel network offering a complex pattern considered as a worst-case navigation situation. Besides targeted drug delivery to tumor sites using bacterial carrier, aggregation of microorganisms is required for micromanipulation and microassembly.


Magnetotactic bacteria Magnetic devices Micro-robotics Bacterial aggregation Directional control 



This project is supported in part by École Polytechnique Research Chair in Nanorobotics, a Discovery grant from the Natural Sciences and Engineering Research Council of Canada (NSERC), and US grant Number R21EB007506 from the National Institute Of Biomedical Imaging And Bioengineering. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institute of Biomedical Imaging And Bioengineering or the National Institutes of Health (NIH). The authors would like to thank Mahmood Mohammadi from the NanoRobotics Laboratory, Polytechnique of Montréal for his valuable help with MC-1 magnetotactic bacteria, and Ayman Baatour for his help in conducting some experiments.


  1. N. Agrawal, C. Bettegowda, I. Cheong, J.F. Geschwind, C.G. Drake, E.L. Hipkiss et al., Proc. Natl. Acad. Sci. USA 101, 15172 (2004)CrossRefGoogle Scholar
  2. D. Akin, J. Sturgis, K. Ragheb, D. Sherman, K. Burkholder, J.P. Robinson, A.K. Bhunia, S. Mohammed, R. Bashir, Nature Nanotechnol. 2, 441 (2007)CrossRefGoogle Scholar
  3. J.C. Anderson, E.J. Clarke, A.P. Arkin, C.A. Voigt, J. Mol. Biol. 355, 619 (2006)CrossRefGoogle Scholar
  4. D.A. Bazylinski, T.J. Williams, C.T. Lefèvre, R.J. Berg, C.L. Zhang, S.S. Bowser, A.J. Dean, T.J. Beveridge, Int. J. Syst. Evol. Microbiol. (2012). doi: 10.1099/ijs.0.038927-0 Google Scholar
  5. K. Belharet, D. Folio, A. Ferreira, IEEE/RSJ Int. Conf. Intell. Robots Syst. (2010). doi: 10.1109/IROS.2010.5650803 Google Scholar
  6. C. Bettegowda, L.H. Dang, R. Abrams et al., Proc. Natl. Acad. Sci. 100, 15083 (2003)CrossRefGoogle Scholar
  7. R.P. Blakemore, Science 190, 377 (1975)CrossRefGoogle Scholar
  8. C. Brekken, O.S. Bruland, D.C. de Lange, Anticancer. Res. 20, 3503 (2000)Google Scholar
  9. A. Cebers, M. Ozols, Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 73, 21505 (2006)CrossRefGoogle Scholar
  10. L.H. Dang, C. Bettegowda, D.L. Huso, K.W. Kinzler, B. Vogelstein, Proc. Natl. Acad. Sci. USA 98, 15155 (2001)CrossRefGoogle Scholar
  11. T. Danino, J. Lo, A. Prindle, J. Hasty, S.N. Bhatia, ACS Synth. Biol. 1, 456 (2012)CrossRefGoogle Scholar
  12. G. Dietrich et al., Nature Biotechnol. 16, 862 (1998)CrossRefGoogle Scholar
  13. N.S. Forbes, L.L. Munn, D. Fukumura, R.K. Jain, Cancer Res. 63, 5188 (2003)Google Scholar
  14. R.B. Frankel, D.A. Bazylinski, M.S. Johnson, B.L. Taylor, Biophys. J. 73, 994 (1997)CrossRefGoogle Scholar
  15. R.B. Frankel, Annu. Rev. Biophys. Bioeng. 13, 85 (1984)CrossRefGoogle Scholar
  16. B. Gleich, N. Hellwig, H. Bridell, R. Jurgons, C. Seliger, C. Alexiou, B. Wolf, T. Weyh, IEEE Trans. Nanotechnol. 6, 164 (2007)CrossRefGoogle Scholar
  17. H. Guo, J. Zhang, C. Inal, Gene Ther. 18, 95 (2010)CrossRefGoogle Scholar
  18. U.O. Häfeli, G.J. Pauer, W.K. Roberts, J.L. Humm, R.M. Macklis, Scientific and Clinical Applications of Magnetic Carriers (Plenum Press, New York, 1997), p. 501CrossRefGoogle Scholar
  19. G. Harasko, H. Pfutzner, K. Futschik, IEEE Trans. Magn. 31, 938 (1995)CrossRefGoogle Scholar
  20. G. Helmlinger, F. Yuan, M. Dellian, R.K. Jain, Nat. Med. 3, 177 (1997)CrossRefGoogle Scholar
  21. R.M. Hoffman, Curr. Opin. Biotechnol. 22, 917 (2011)CrossRefGoogle Scholar
  22. R.K. Jain, J. Control. Release 53, 49 (1998)CrossRefGoogle Scholar
  23. R.K. Jain, Sci. Am. 271, 58 (1994a)CrossRefGoogle Scholar
  24. R.K. Jain, Adv. Chem. Eng. 20, 129 (1994b)CrossRefGoogle Scholar
  25. R.W. Kasinskas, N.S. Forbes, Biotechnol. Bioeng. 94, 710 (2006)CrossRefGoogle Scholar
  26. D. Kim, A. Liu, E. Diller, M. Sitti, Biomed. Microdevices 14, 1009 (2012)CrossRefGoogle Scholar
  27. K.B. Low, M. Ittensohn, T. Le, Nature Biotechnol. 17, 37 (1999)Google Scholar
  28. A.S. Lübbe, C. Alexiou, C. Bergemann, J. Surg. Res. 95, 200 (2001)CrossRefGoogle Scholar
  29. S. Martel, C. Tremblay, S. Ngakeng, G. Langlois, Appl. Phys. Lett. 89, 233804 (2006)CrossRefGoogle Scholar
  30. S. Martel, J.-B. Mathieu, O. Felfoul, A. Chanu, E. Aboussouan, S. Tamaz et al., Appl. Phys. Lett. 90, 114105 (2007)CrossRefGoogle Scholar
  31. S. Martel, Biomed. Microdevices 14, 1033 (2012)CrossRefGoogle Scholar
  32. S. Martel, M. Mohammadi, O. Felfoul, Z. Lu, P. Pouponneau, Int. J. Robot. Res. 28, 571 (2009)CrossRefGoogle Scholar
  33. J.B. Mathieu, S. Martel, Biomed. Microdevices 9, 801 (2007)CrossRefGoogle Scholar
  34. F.C. Meldrum, S. Mann, B.R. Heywood, R.B. Frankel, D.A. Bazylinski, P. Roy, Soc. Lond. B Bio. 251, 231 (1993)CrossRefGoogle Scholar
  35. F. Mishima, S. Fujimoto, S. Takeda, Y. Izumi, S. Nishijima, J. Magn. Magn. Mater. 310, 2883 (2007)CrossRefGoogle Scholar
  36. P.A. Netti, D.A. Berk, M.A. Swartz, A.J. Grodzinsky, R.K. Jain, Cancer Res. 60, 2497 (2000)Google Scholar
  37. S. Pilgrim et al., Gene Ther. 10, 2036 (2003)CrossRefGoogle Scholar
  38. A. Sahari, D. Headen, B. Behkam, Biomed. Microdevices 14, 999 (2012)CrossRefGoogle Scholar
  39. D.R. Sizemore, A.A. Branstrom, J.C. Sadoff, Science 270, 299 (1995)CrossRefGoogle Scholar
  40. A.T. St Jean, M. Zhang, N.S. Forbes, Curr. Opin. Biotechnol. 19, 511 (2008)CrossRefGoogle Scholar
  41. S. Tamaz, R. Gourdeau, A. Chanu, J.-B. Mathieu, S. Martel, IEEE Trans. Biomed. Eng. 55, 1854 (2008)CrossRefGoogle Scholar
  42. O. Trédan, C.M. Galmarini, K. Patel, I.F. Tannock, J. Natl. Cancer Inst. 99, 1441 (2007)CrossRefGoogle Scholar
  43. L.E. Udrea, N.J.C. Strachan, V. Badescu, O. Rotariu, Phys. Med. Biol. 51, 4869–4881 (2006)CrossRefGoogle Scholar
  44. G. Vassaux, J. Nitcheu, S. Jezzard, N.R. Lemoine, J. Pathol. 208, 290 (2006)CrossRefGoogle Scholar
  45. P. Vaupel, F. Kallinowski, P. Okunieff, Cancer Res. 49, 6449 (1989)Google Scholar
  46. T.J. Williams, C.L. Zhang, J.H. Scott, D.A. Bazylinski, Appl. Environ. Microbiol. 72, 1322 (2006)CrossRefGoogle Scholar
  47. Y. Yoshida, S. Fukui, S. Fujimoto, F. Mishima, S. Takeda, Y. Izumi, S. Ohtani, Y. Fujitani, S. Nishijima, J. Magn. Magn. Mater. 310, 2880 (2007)CrossRefGoogle Scholar
  48. L. Zhang, E. Ruh, D. Grutzmacher, L.X. Dong, D.J. Bell, B.J. Nelson, C. Schonenberger, Nano Lett. 6, 1311 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Computer and Software Engineering, NanoRobotics LaboratoryPolytechnique de MontréalMontréalCanada

Personalised recommendations