Biomedical Microdevices

, Volume 15, Issue 6, pp 917–924 | Cite as

Comparative assessment of iridium oxide and platinum alloy wires using an in vitro glial scar assay

  • Evon S. Ereifej
  • Saida Khan
  • Golam Newaz
  • Jinsheng Zhang
  • Gregory W. Auner
  • Pamela J. VandeVord


The long-term effect of chronically implanted electrodes is the formation of a glial scar. Therefore, it is imperative to assess the biocompatibility of materials before employing them in neural electrode fabrication. Platinum alloy and iridium oxide have been identified as good candidates as neural electrode biomaterials due to their mechanical and electrical properties, however, effect of glial scar formation for these two materials is lacking. In this study, we applied a glial scarring assay to observe the cellular reactivity to platinum alloy and iridium oxide wires in order to assess the biocompatibility based on previously defined characteristics. Through real-time PCR, immunostaining and imaging techniques, we will advance the understanding of the biocompatibility of these materials. Results of this study demonstrate iridium oxide wires exhibited a more significant reactive response as compared to platinum alloy wires. Cells cultured with platinum alloy wires had less GFAP gene expression, lower average GFAP intensity, and smaller glial scar thickness. Collectively, these results indicated that platinum alloy wires were more biocompatible than the iridium oxide wires.


Iridium Platinum Biocompatibility Neural prosthesis 



We would like to acknowledge the Wayne State University President’s Translational Enhancement Award for funding support. We express gratitude to Dr. Bulent Ozkan and Dr. Nisrine Zakaria for assistance with statistical analysis.


  1. A.K. Achyuta, V.S. Polikov, A.J. White, H.G. Lewis, S.K. Murthy, Biocompatibility assessment of insulating silicone polymer coatings using an in vitro glial scar assay. Macromol. Biosci 10, 872–880 (2010)CrossRefGoogle Scholar
  2. W.F. Agnew, T.G. Yuen, D.B. McCreery, L.A. Bullara, Histopathologic evaluation of prolonged intracortical electrical stimulation. Exp. Neurol 92, 162–185 (1986)CrossRefGoogle Scholar
  3. R. Biran, D.C. Martin, P.A. Tresco, Neuronal cell loss accompanies the brain tissue response to chronically implanted silicon microelectrode arrays. Exp. Neurol 195, 115–126 (2005)CrossRefGoogle Scholar
  4. S.F. Cogan, A.A. Guzelian, W.F. Agnew, T.G. Yuen, D.B. McCreery, Over-pulsing degrades activated iridium oxide films used for intracortical neural stimulation. J. Neurosci. Methods 137, 141–150 (2004)CrossRefGoogle Scholar
  5. S.F. Cogan, P.R. Troyk, J. Ehrlich, T.D. Plante, In vitro comparison of the charge-injection limits of activated iridium oxide (AIROF) and platinum-iridium microelectrodes. IEEE Trans. Biomed. Eng 52, 1612–1614 (2005)CrossRefGoogle Scholar
  6. E.S. Ereifej, S. Khan, G. Newaz, J. Zhang, G.W. Auner, P.J. VandeVord, Characterization of astrocyte reactivity and gene expression on biomaterials for neural electrodes. J. Biomed. Mater. Res. Part A 99, 141–150 (2011)CrossRefGoogle Scholar
  7. M.T. Fitch, J. Silver, CNS injury, glial scars, and inflammation: inhibitory extracellular matrices and regeneration failure. Exp. Neurol 209, 294–301 (2008)CrossRefGoogle Scholar
  8. N.M. Gervasi, J.C. Kwok, J.W. Fawcett, Role of extracellular factors in axon regeneration in the CNS: implications for therapy. Regen Med 3, 907–923 (2008)CrossRefGoogle Scholar
  9. K. Gobbels, T. Kuenzel, A. van Ooyen, W. Baumgartner, U. Schnakenberg, P. Braunig, Neuronal cell growth on iridium oxide. Biomaterials 31, 1055–1067 (2010)CrossRefGoogle Scholar
  10. R.W. Griffith, D.R. Humphrey, Long-term gliosis around chronically implanted platinum electrodes in the Rhesus macaque motor cortex. Neurosci. Lett 406, 81–86 (2006)CrossRefGoogle Scholar
  11. S. Khan, G. Newaz, A comprehensive review of surface modification for neural cell adhesion and patterning. J. Biomed. Mater. Res. A 93, 1209–1224 (2010)CrossRefGoogle Scholar
  12. S.P. Khan, G.G. Auner, O. Palyvoda, G.M. Newaz, Biocompatibility assessment of next generation materials for brain implantable microelectrodes. Mater. Lett 65, 876–879 (2011)CrossRefGoogle Scholar
  13. S. Kidambi, J. Yarmush, Y. Berdichevsky, S. Kamath, W. Fong, J. Schianodicola, Propofol induces MAPK/ERK cascade dependant expression of cFos and Egr-1 in rat hippocampal slices. BMC Res. Notes 3, 201 (2010)CrossRefGoogle Scholar
  14. N.A. Kotov, J.O. Winter, I.P. Clements, E. Jan, B.P. Timko, S. Campidelli et al., Nanomaterials for neural interfaces. Adv. Mater 21, 3970–4004 (2009)CrossRefGoogle Scholar
  15. I.S. Lee, C.N. Whang, J.C. Park, D.H. Lee, W.S. Seo, Biocompatibility and charge injection property of iridium film formed by ion beam assisted deposition. Biomaterials 24, 2225–2231 (2003)CrossRefGoogle Scholar
  16. B. Liu, J.S. Hong, Primary rat mesencephalic neuron-glia, neuron-enriched, microglia-enriched, and astroglia-enriched cultures. Methods Mol. Med 79, 387–395 (2003)Google Scholar
  17. K.J. Livak, T.D. Schmittgen, Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods 25, 402–408 (2001)CrossRefGoogle Scholar
  18. D.B. McCreery, W.F. Agnew, Changes in extracellular potassium and calcium concentration and neural activity during prolonged electrical stimulation of the cat cerebral cortex at defined charge densities. Exp. Neurol 79, 371–396 (1983)CrossRefGoogle Scholar
  19. D.B. McCreery, W.F. Agnew, T.G. Yuen, L. Bullara, Charge density and charge per phase as cofactors in neural injury induced by electrical stimulation. IEEE Trans. Biomed. Eng 37, 996–1001 (1990)CrossRefGoogle Scholar
  20. D.R. Merrill, M. Bikson, J.G. Jefferys, Electrical stimulation of excitable tissue: design of efficacious and safe protocols. J. Neurosci. Methods 141, 171–198 (2005)CrossRefGoogle Scholar
  21. A. Mian, G. Newaz, L. Vendra, N. Rahman, D.G. Georgiev, G. Auner et al., Laser bonded microjoints between titanium and polyimide for applications in medical implants. J. Mater. Sci. Mater. Med 16, 229–237 (2005)CrossRefGoogle Scholar
  22. S. Negi, R. Bhandari, L. Rieth, F. Solzbacher, Effect of sputtering pressure on pulsed-DC sputtered iridium oxide films. Sens. Actuators B. Chem 137, 370–378 (2009)CrossRefGoogle Scholar
  23. S. Negi, R. Bhandari, L. Rieth, R. Van Wagenen, F. Solzbacher, Neural electrode degradation from continuous electrical stimulation: comparison of sputtered and activated iridium oxide. J. Neurosci. Methods 186, 8–17 (2010a)CrossRefGoogle Scholar
  24. S. Negi, R. Bhandari, L. Rieth, F. Solzbacher, In vitro comparison of sputtered iridium oxide and platinum-coated neural implantable microelectrode arrays. Biomed. Mater 5, 15007 (2010b)CrossRefGoogle Scholar
  25. A. Petrossians, J.J. Whalen, J.D. Weiland, F. Mansfeld, Electrodeposition and characterization of thin-film platinum-iridium alloys for biological interfaces. J. Electrochem. Soc 158, D269–D276 (2011a)CrossRefGoogle Scholar
  26. A. Petrossians, J.J. Whalen, J.D. Weiland, F. Mansfeld, Surface modification of neural stimulating/recording electrodes with high surface area platinum-iridium alloy coatings. Conf. Proc. IEEE Eng. Med. Biol. Soc 2011, 3001–3004 (2011b)Google Scholar
  27. V.S. Polikov, P.A. Tresco, W.M. Reichert, Response of brain tissue to chronically implanted neural electrodes. J. Neurosci. Methods 148, 1–18 (2005)CrossRefGoogle Scholar
  28. V.S. Polikov, M.L. Block, J.M. Fellous, J.S. Hong, W.M. Reichert, In vitro model of glial scarring around neuroelectrodes chronically implanted in the CNS. Biomaterials 27, 5368–5376 (2006)CrossRefGoogle Scholar
  29. V.S. Polikov, E.C. Su, M.A. Ball, J.S. Hong, W.M. Reichert, Control protocol for robust in vitro glial scar formation around microwires: essential roles of bFGF and serum in gliosis. J. Neurosci. Methods 181, 170–177 (2009)CrossRefGoogle Scholar
  30. T.L. Rose, L.S. Robblee, Electrical stimulation with Pt electrodes. VIII. Electrochemically safe charge injection limits with 0.2 ms pulses. IEEE Trans. Biomed. Eng 37, 1118–1120 (1990)CrossRefGoogle Scholar
  31. T.D. Schmittgen, K.J. Livak, Analyzing real-time PCR data by the comparative C(T) method. Nat. Protoc 3, 1101–1108 (2008)CrossRefGoogle Scholar
  32. J.T. Seil, T.J. Webster, Decreased astroglial cell adhesion and proliferation on zinc oxide nanoparticle polyurethane composites. Int. J. Nanomed 3, 523–531 (2008)Google Scholar
  33. B. Squire, R. McConnell, Z. Spitzer (ed.), Fundamental Neuroscience, 2nd edn (Academic Press, 2003)Google Scholar
  34. D.H. Szarowski, M.D. Andersen, S. Retterer, A.J. Spence, M. Isaacson, H.G. Craighead et al., Brain responses to micro-machined silicon devices. Brain Res 983, 23–35 (2003)CrossRefGoogle Scholar
  35. S. Thanawala, O. Palyvoda, D.G. Georgiev, S.P. Khan, I.A. Al-Homoudi, G. Newaz et al., A neural cell culture study on thin film electrode materials. J. Mater. Sci. Mater. M 18, 1745–1752 (2007a)CrossRefGoogle Scholar
  36. S. Thanawala, D.G. Georgiev, R.J. Baird, G. Auner, Characterization of iridium oxide thin films deposited by pulsed-direct-current reactive sputtering. Thin. Solid Films 515, 7059–7065 (2007b)CrossRefGoogle Scholar
  37. J.N. Turner, W. Shain, D.H. Szarowski, M. Andersen, S. Martins, M. Isaacson et al., Cerebral astrocyte response to micromachined silicon implants. Exp. Neurol 156, 33–49 (1999)CrossRefGoogle Scholar
  38. Z. Wang, L. Millet, V. Chan, H. Ding, M.U. Gillette, R. Bashir et al., Label-free intracellular transport measured by spatial light interference microscopy. J. Biomed. Opt 16, 026019 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Evon S. Ereifej
    • 1
  • Saida Khan
    • 1
  • Golam Newaz
    • 2
  • Jinsheng Zhang
    • 3
  • Gregory W. Auner
    • 4
  • Pamela J. VandeVord
    • 1
    • 5
    • 6
  1. 1.Department of Biomedical EngineeringWayne State UniversityDetroitUSA
  2. 2.Department of Mechanical EngineeringWayne State UniversityDetroitUSA
  3. 3.Department of OtolaryngologyWayne State University School of MedicineDetroitUSA
  4. 4.Department of Biomedical Engineering, Smart Sensor and Integrated MicrosystemsWayne State UniversityDetroitUSA
  5. 5.Research & Development ServiceJohn D. Dingell VA Medical CenterDetroitUSA
  6. 6.Department of Biomedical EngineeringVirginia Tech UniversityBlacksburgUSA

Personalised recommendations